Ускоренный метод Про для оценки медианы предела выносливости

Ускоренный метод усталостных испытаний Про предусматривает испытание образцов до разрушения при линейно возрастающей амплитуде цикла напряжений. В зависимости от конструкции испытательной машины возрастание напряжений может быть ступенчатым или непрерывным (рис. 3.1).

Рис 3.1. Схема испытаний с непрерывно возрастающей амплитудой цикла напряжений.

Для определения предела выносливости методом Про необходимо испытывать не менее трех-четырех серий образцов. Скорость возрастания амплитуды напряжений α для каждой серии принимают различной.

Максимальную скорость нагружения выбирают с таким расчетом, чтобы напряжение σp в момент разрушения не превышало предела текучести материала. Минимальную скорость назначают по возможности низкой. Однако, необходимо учитывать, что длительность испытаний по методу Про определяется в основном испытаниями при минимальной скорости нагружения, т. е. эффективность рассматриваемого метода во многом зависит от уровня минимальной скорости возрастания напряжений. Обычно скорости возрастания амплитуды напряжений выбирают в диапазоне α = 5·10-5.5·10-5 МПа/цикл.

Испытания всех серий проводят при одинаковой начальной амплитуде цикла напряжений σH, величину которой для чугунов и сталей выбирают на 10-15% выше предполагаемой величины предела выносливости. Для легких сплавов начальную амплитуду цикла напряжений принимают равной ожидаемой величине предела выносливости для базы 107 циклов. Снижение уровня начальной амплитуды цикла напряжения по сравнению с указанными значениями уменьшает эффективность ускоренных испытаний.

Исследованиями установлено, что снижение начального уровня напряжения не оказывает значительного влияния на определяемую величину предела выносливости для материалов, не чувствительных к тренировке.

Предел выносливости при ускоренных испытаниях по методу Про определяется из уравнения

3.1

где α - скорость возрастания амплитуды напряжения; σp - медиана разрушающего напряжения при испытании с данной скоростью возрастания напряжений; k, c — параметры уравнения.

Зависимость, построенная по уравнению (3.1) в координатах y = σp, x = αc, изображается прямой линией, уравнение которой

,

3.2

где a = σ-1 и b = k.

Для определения предела выносливости подбирают методом последовательных приближений такое значение параметра с, при котором отклонение экспериментальных точек от прямой Y = a + b·x будет минимальным.

В этом случае функция

3.3

должна иметь минимальное значение, т. е.

3.4

3.5

Отсюда

,

3.6

3.7

В приведенных формулах и представляют собой начальные моменты величин x = αc и y = σp, вычисляемые по формулам

,

3.8

,

3.9

,

3.10

,

3.11

где m — число скоростей возрастания амплитуды напряжения; ni — число образцов, испытанных при i-й скорости возрастания амплитуды напряжения; xi — величина, соответствующая скорости возрастания амплитуды напряжений; yi — медиана разрушающего напряжения при i-й скорости его возрастания.

За медиану разрушающего напряжения при нечетном числе образцов, испытанных при одной скорости возрастания амплитуды напряжений, принимается разрушающее напряжение среднего образца в вариационном ряду. При четном числе образцов медиана разрушающего напряжения определяется как полусумма разрушающих напряжений двух средних образцов в вариационном ряду.

Мерой рассеяния экспериментальных точек вокруг линии Y = a + bx является величина Q, определяемая выражением

3.12

Значение параметра с выбирается так, чтобы значение Q (3.12) было минимальным (рис 3.2). Для многих материалов значение параметра с лежит в диапазоне 0.3-0.5.

Рис. 3.2. Схема определения значения параметра с уравнения (3.1).

Для легких сплавов, сталей и чугунов систематическая ошибка при определении предела выносливости методом Про в большинстве случаев не превышает 4-6%. Случайная ошибка зависит от объема испытаний. Анализ результатов ускоренных испытаний показал, что для материалов с коэффициентом вариации предела выносливости ≈10% число образцов для надежного определения медианы предела выносливости должно составлять 8-12 штук. Для сплавов с >15%, требуется испытание 12-20 образцов.

Для легких сплавов величина предела выносливости, найденная из уравнения (3.1), соответствует базе 107 циклов [1].

Определение предела выносливости деформируемых алюминиевых и титановых сплавов для других баз по результатам испытаний с возрастающей амплитудой напряжений может производиться с помощью уравнений (2.38) и (2.43) после предварительной оценки величины σ-1 для базы 107 циклов на основании формулы (3.1).

Метод Про при определении медианы предела выносливости дает экономию во времени примерно до 10 раз и не дает экономии в числе образцов по сравнению с обычным методом [20].

Определение предела выносливости по методу Про производится в следующей последовательности:

  1. разрушающие напряжения для образцов, испытанных на одном уровне скорости возрастания амплитуды, располагают в порядке возрастания, то есть в вариационный ряд;
  2. определяют медианы разрушающих напряжений для каждого уровня скорости возрастания амплитуды;
  3. задаются рядом значений параметра с и вычисляют параметры a и b по формулам (3.6) и (3.7), и меру рассеяния экспериментальных данных вокруг прямой линии по формуле (3.12);
  4. определяют значение параметра с, дающее минимум отклонения экспериментальных точек от прямой Y = a + bx;
  5. находят предел выносливости σ-1 = a для установленного значения параметра с.

Объем испытаний методом Про можно сократить в 1.5-2 раза при использовании заранее известного значения параметра с уравнения (3.1).

В этом случае испытания целесообразно проводить при двух скоростях возрастания амплитуды цикла напряжения.

Оценка параметра с для этой цели может быть произведена по результатам ранее проведенных испытаний на усталость аналогичных материалов и элементов конструкций.

Так, например, при переменном изгибе образцов из сталей 45 и 30ХГСА и переменном кручении образцов из высокопрочного чугуна параметр с принимает значения, близкие к 0.3 [20]. Для алюминиевых сплавов средней прочности при испытаниях на переменный изгиб можно принять с = 0.33, для высокопрочных сплавов с = 0.37 [20]. Абсолютные размеры поперечного сечения образцов не оказывают заметного влияния на величину параметра с. Концентрация напряжений приводит к снижению его значения.

Следует иметь в виду, что абсолютная погрешность в оценке значения параметра с, равная 0.1 (т. е. примерно 30%) приводит к ошибке определения предела выносливости в среднем лишь на 8-10%.

Опыт использования ускоренного метода Про указывает на возможность его применения для оценки предела выносливости образцов и натурных деталей, причем в качестве критерия разрушения можно принимать как образование макротрещины усталости определенного размера, так и окончательное разрушение.



Ускоренный метод Про для оценки медианы предела выносливости  Следующая 
 
Яндекс цитирования
MYsopromat.ru - сопромат в режиме on-line