Схематизация свойств материала
Реальные материалы обладают разнообразными физическими свойствами и характерной для каждого из них структурой. С целью упрощения расчетов в сопротивлении материалов используются следующие допущения о свойствах материала.
1. Материал считается однородным, то есть его свойства во всех точках одинаковы.
2. Материал считается изотропным, то есть его свойства во всех направлениях одинаковы.
Изотропными являются аморфные материалы, такие как стекло и смолы. Анизотропными являются пластмассы, текстолит и т.п. Металлы являются поликристаллическими телами, состоящими из большого количества зерен, размеры которых очень малы (порядка 0,01 мм). Каждое зерно является анизотропным, но вследствие малых размеров зерен и беспорядочного их расположения металлы проявляют свойство изотропии.
3. Материал обладает свойством идеальной упругости, вследствие которой деформируемое тело полностью восстанавливает свою форму и размеры после снятия нагрузки независимо от величин нагрузок и температуры тела.
4. Форма и размеры упругого тела меняются прямо пропорционально изменению нагрузок, то есть по известному закону Гука (1660 г.).
В случае чистого однородного растяжения или сжатия призматического стержня, закон Гука имеет вид:
,
|
(1.1) |
где P - растягивающая (сжимающая) осевая сила; lo, Fo - исходная длина и исходная площадь поперечного сечения стержня; E - физическая константа материала – модуль продольной упругости, различный для разных материалов; Δl - абсолютное удлинение расчетной части lo стержня. Формулу (1.1) можно представить в виде:
|
(1.2) |
или
|
(1.3) |
и
,
|
(1.4) |
где ε = Δl/lo - относительное удлинение расчетной части стержня; σ = P/Fo - нормальное напряжение, то есть усилие, приходящееся на единицу площади Fo поперечного сечения стержня.
В формулировке данной гипотезы границы применения закона пропорциональности Гука ничем не оговариваются, хотя в действительности при некоторых нагрузках начинается существенное отклонение от закона пропорциональности.
В пределах упругости имеет место эффект Пуассона (1816 г.) – отношение относительных поперечных удлинений ε/ к относительным продольным удлинениям ε есть величина постоянная для данного материала»:
|
(1.5) |
или
,
|
(1.6) |
где μ - коэффициент Пуассона – упругая константа материалов (0<μ<0.5). Уравнение (1.6) выражает закон Гука для поперечных деформаций.
5. Материал обладает свойством сплошности, то есть способностью сплошь (без пустот) заполнять пространство, ограниченное поверхностью тела. Вследствие этого материал считается непрерывным, что позволяет использовать для определения напряжений и деформаций математический аппарат дифференциального и интегрального исчисления.
6. Упругие тела являются относительно жесткими, благодаря чему перемещения точек тела весьма малы по сравнению с размерами самого тела. Эта гипотеза служит основанием для принципа начальных размеров.
|