Растяжением (сжатием) называется такой вид нагружения бруса, при котором из шести составляющих главного вектора и главного момента внутренних сил от нуля отличается только продольная сила.
Рассмотрим случай осевого (центрального) растяжения или сжатия, когда внешние силы действуют по оси стержня (Рис. 4.1). Для определения внутренних усилий (продольных сил) применим метод сечений. Проведем какое-нибудь сечение, например а—а, и рассмотрим равновесие нижней отсеченной части. Воздействие верхней отброшенной части на нижнюю заменим продольной силой и предварительно направим ее от сечения, т. е. предположим, что сила является растягивающей. Составим уравнение равновесия. Проецируя все силы, действующие на нижнюю часть, на направление параллельное оси стержня, и приравнивая сумму проекций нулю, получаем
откуда
.
Знак минус показывает, что направление силы N1 следует изменить на обратное, т. е. продольная сила будет в данном случае не растягивающей, как мы предположили, а сжимающей. Аналогично найдем продольную силу в сечении b—b: N2=5P (растяжение). Условимся продольную силу, соответствующую растяжению считать положительной. Наглядное представление о законе изменения продольных сил по длине стержня дает график (эпюра продольных сил), ось абсцисс которого проводится параллельно оси стержня, а ось ординат ей перпендикулярна. По оси ординат в выбранном масштабе откладывают значения продольных сил (с учетом знаков) в поперечных сечениях стержня. Для рассмотренного случая эпюра N представлена на Рис. 4.1.
Рис. 4.1. Эпюра продольных усилий