Механические свойства при сжатии
При сжатии образца из пластичного материала, как и при растяжении, сначала имеет место линейная зависимость ε от σ, затем площадка текучести и зона упрочнения. Но в отличие от растяжения площадка текучести едва намечается, и в дальнейшем нагрузка все время возрастает. Возрастание происходит потому, что при сжатии образец из пластичного материала не разрушается, а постепенно сплющивается в тонкий диск при одновременном увеличении площади сечения (Рис. 4.11). Определить предел прочности пластичного материала при сжатии очевидно невозможно, так как он просто не существует.
|
|
|
|
Рис. 4.11 |
Рис. 4.12 |
Рис. 4.13 |
Рис. 4.14 |
Для испытаний на сжатие применяются короткие цилиндрические образцы. Бочкообразная форма, которую они принимают в процессе испытания, объясняется наличием сил трения между плитами пресса и торцами образца. Сравнительная диаграмма растяжения и сжатия для пластичного материала приведена на Рис. 4.12.
Для пластичных материалов характерно малое отличие пределов текучести при растяжении σтр и сжатии σтсж. Различие в работе материала на растяжение и сжатие характеризуется коэффициентом υт=σтр/σтсж. Материалы, у которых υт=1, называются одинаково работающими на растяжение и сжатие.
Иные свойства при сжатии проявляют хрупкие материалы. Образцы из таких материалов при сжатии разрушаются внезапно, раскалываясь по наклонным (под углом 450) плоскостям, как показано на Рис. 4.13.
Сравнительная диаграмма растяжения и сжатия хрупкого материала приведена на Рис. 4.14. Качественные особенности у обоих кривых одинаковы, но сравнение пределов прочности при растяжении и сжатии показывает, что хрупкие материалы, как правило, значительно лучше работают на сжатие, чем на растяжение. Например, у чугуна предел прочности при сжатии в среднем в три раза больше, чем при растяжении.
|