Главная  Учебные курсы  Сопротивление материалов  Растяжение и сжатие  Анализ напряженного состояния при растяжении (сжатии)

Анализ напряженного состояния при растяжении (сжатии)

При растяжении бруса наклонные сечения, как и поперечные, остаются плоскими и параллельными. Следовательно, внутренние силы распределены по наклонным сечениям равномерно.

Нормальное напряжение в поперечном сечении растянутого или сжатого стержня есть главное напряжение. Поэтому на рис. 4.20 оно обозначено s1. Так как отлично от нуля только одно главное напряжение, то напряженное состояние при одноосном растяжении (сжатии) является линейным. При растяжении:

,

при сжатии:

.

Составляющие вектора полного напряжения по координатным осям в наклонной площадке определяются из уравнения (3.9) или (3.10):

,

Нормальные и касательные напряжения в наклонной площадке – по уравнениям (3.12), (3.13). Для случая растяжения стержня:

,

На площадке, наклоненной под углом β=π/2+α:

,

Напряжения на наклонных площадках

Рис. 4.20. Напряжения на наклонных площадках

На 4.20 показаны напряжения на наклонных площадках и построен круг Мора для случая растяжения стержня. Аналогичные построения и расчеты могут быть сделаны и для случая сжатия стержня. Таким образом, напряжения в стержне изменяются в зависимости от наклона сечения. Тем самым на конкретном примере подтверждается зависимость напряжений в точке тела от ориентировки площадки их действия. Анализ формул показывает, что при одноосном растяжении бруса нормальные напряжения достигают наибольших значений в поперечных сечениях (α=0), а касательные напряжения τα - в сечении, наклонном к оси бруса под углом α=45°, причем τmax=s1/2. В продольном сечении (α=90°) касательные и нормальные напряжения равны нулю.

Интересно отметить, что сумма нормальных напряжений на двух любых ортогональных площадках есть величина постоянная, а касательные напряжения на этих площадках равны по величине, что является проявлением сформулированного выше закона парности касательных напряжений.



 Предыдущая  Анализ напряженного состояния при растяжении (сжатии)  Следующая 
 
Яндекс цитирования
MYsopromat.ru - сопромат в режиме on-line