Напряжения

Мерой интенсивности внутренних сил, распределенных по сечениям, служат напряжения – усилия, приходящиеся на единицу площади сечения. Выделим в окрестности точки B малую площадку ΔF (рис. 3.1). Пусть ΔR - равнодействующая внутренних сил, действующих на эту площадку. Тогда среднее значение внутренних сил, приходящихся на единицу площади ΔF рассматриваемой площадки, будет равно:

Среднее напряжение на площадке.

(3.1)

Рис. 3.1. Среднее напряжение на площадке

Величина pm называется средним напряжением. Она характеризует среднюю интенсивность внутренних сил. Уменьшая размеры площади, в пределе получим

.

(3.2)

Величина p называется истинным напряжением или просто напряжением в данной точке данного сечения.

Единица напряжения – паскаль, 1 Па = 1 Н/м2. Так как реальные значения напряжений будут выражаться очень большими числами, то следует применять кратные значения единиц, например МПа (мегапаскаль) 1 МПа= 106 Н/м2.

Напряжения, как и силы, являются векторными величинами. В каждой точке сечения тела полное напряжение p можно разложить на две составляющие (рис. 3.2):

1) составляющую, нормальную к плоскости сечения. Эта составляющая называется нормальным напряжением и обозначается σ;

2) составляющую, лежащую(в плоскости сечения. Эта составляющая обозначается τ и называется касательным напряжением. Касательное напряжение в зависимости от действующих сил может иметь любое направление в плоскости сечения. Для удобства τ представляют в виде двух составляющих по направлению координатных осей. Принятые обозначения напряжений показаны ни рис. 3.2

У нормального напряжения ставится индекс, указывающий какой координатной оси параллельно данное напряжение. Растягивающее нормальное напряжение считается положительным, сжимающее – отрицательным. Обозначения касательных напряжений имеют два индекса: первый из них указывает, какой оси параллельна нормаль к площадке действия данного напряжения, а второй – какой оси параллельно само напряжение. Разложение полного напряжения на нормальное и касательное имеет определенный физический смысл. Нормальное напряжение возникает, когда частицы материала стремятся отдалиться друг от друга или, наоборот, сблизиться. Касательные напряжения связаны со сдвигом частиц материала по плоскости сечения.

Разложение вектора полного напряжения

Рис. 3.2. Разложение вектора полного напряжения

Если мысленно вырезать вокруг какой-нибудь точки тела элемент в виде бесконечно малого кубика, то по его граням в общем случае будут действовать напряжения, представленные на рис. 3.3. Совокупность напряжений на всех элементарных площадках, которые можно провести через какую-либо точку тела называется напряженным состоянием в данной точке.

Вычислим сумму моментов всех элементарных сил, действующих на элемент (рис.3.3), относительно координатных осей, так, например, для оси x с учетом равновесия элемента, имеем:

.

(3.3)

Повторяя указанные действия для других осей, получим закон парности касательных напряжений:

,

(3.4)

который формулируется следующим образом: составляющие касательных напряжений на двух взаимно перпендикулярных площадках, перпендикулярные общему ребру, равны по величине и противоположны по знаку, то есть либо обе направлены к ребру либо обе направлены от ребра.

Система напряжений в точке

Рис. 3.3. Система напряжений в точке



Напряжения  Следующая 
 
MYsopromat.ru - сопромат в режиме on-line
Яндекс цитирования
Наш сайт работает на Sapid CMS