Расчеты на прочность при поперечном изгибе
При поперечном изгибе наибольшие нормальные напряжения возникают в наиболее удаленных от нейтральной оси точках сечения, а на самой этой оси нормальные напряжения равны нулю, тогда как зона действия наибольших касательных напряжений расположена, наоборот, вблизи нейтральной оси. Кроме того, величина τmax мала по сравнению с σmax, если длина балки существенно больше высоты сечения. Все это позволяет не принимать во внимание касательные напряжения и проводить расчет на прочность только по нормальным напряжениям (для тонкостенных балок это не всегда справедливо).
Условие прочности балки требует, чтобы максимальные нормальные напряжения не превышали допускаемых напряжений для материала балки:
,
|
(8.20) |
где [σ]=σт/n или [σ]=σв/n.
Если материал одинаково работает на растяжение и сжатие, то опасной будет та точка сечения, где действует наибольшее по абсолютной величине напряжение независимо от его знака. Для хрупких материалов, имеющих существенно различные пределы прочности при растяжении σвр и сжатии σвсж, требуется проверка прочности по наибольшим растягивающим и сжимающим напряжениям:
,
,
где [σ]р=σвр/n или [σ]сж=σвсж/n.
Для балок из пластичных материалов, одинаково работающих на растяжение и сжатие, целесообразно выбирать сечения, симметричные относительно их нейтральных осей; при этом условии обеспечивается одинаковый запас прочности сечения по растянутым и сжатым волокнам.
Если кроме условия прочности исходить еще и из требования минимальной массы балки, то наиболее рациональным будет сечение, которое при заданном моменте сопротивления Wz имеет наименьшую площадь сечения F, а при заданной площади – наибольший момент сопротивления. Поэтому двутавровое сечение имеет существенное преимущество перед прямоугольным сечением.
Для материалов хрупких, обладающих различной прочностью при растяжении и сжатии, рациональным будет сечение, несимметричное относительно нейтральной оси, например тавровое, несимметричное двутавровое и т.п.
|