ЛИТЕРАТУРА

К гл. I


[1] Anderson, W. Е., An engineer views brittle fracture history, Boeing rept., (1969).

[2] Biggs, W. D., The brittle fracture of steel, McDonald and Evans (1960).

[3] Muskhelishvili, N. I., Some basic problems of mathematical theory of elasticity, (1933). English translation, Noordhoff (1953).

[4] Westergaard, H. M., Bearing pressures and cracks, J. Appl. Mech., 61 (1939) pp. A49–A53.

[5] Paris, P. C. and Sih, G. C., Stress analysis of cracks, ASTM STP 381, (1965) pp. 30–81.

[6] Eshelby, J. D., Stress analysis: elasticity and fracture mechanics, ISI publ. 121, (1968), pp. 13–48.

[7] Irwin G. R., Fracture I, Handbuch der Physik VI, Flugge Ed., pp. 558–590, Springer, (1958).

[8] McClintock, F. A. Irwin, G. R., Plasticity aspects of fracture mechanics ASTM STP 381, (1965), pp. 84–113.

[9] Griffith, A. A., The phenomena of rupture and flow in solids, Phil. Trans. Roy. Soc. of London, A 221 (1921) pp. 163–197.

[10] Griffith A. A., The theory of rupture. Proc. 1st Int. Congress Appl. Mech., (1924) pp. 55–63. Biezeno and Burgers ed. Waltman, (1925).

[11] Inflis, С. E., Stresses in a plate due to the presence of cracks and sharp corners, Trans. Inst. Naval Architects, 55 (1913) pp. 219–241.

[12] Orowan, E., Energy criteria of fracture, Welding Journal, 34 (1955) ppl 1575–1605.

[13] Irwin, G. R., Fracture dynamics, Fracturing of Metals, pp. 147–166, ASM publ. (1948).

[14] Wells, A. A. Unstable crack propagation in metals, cleavage and fracture. The Crack Propagation Symposium, pp. 210–230, Cranfield, (1961).

[15] Wells A A., Application of fracture mechanics at and beyond general yield, British Welding Res. Ass. Rept., M13/63 (1963).

[16] Paris, P. C., Gomez, M. P. and Anderson, W. E., A rational analytic theory of fatigue, The Trend in Engineering, 13 (1961) pp. 9–14.

[17] Broek, D. and Schijve, J., The influence of the mean stress on fatigue crack propagation, Aircraft Engineering, 39 (1967) pp. 10–13.

[18] Wilhem, D. P., Investigation of cyclic crack growth transitional behaviour, ASTM STP 415, (1967) pp. 363–383.

[19] Brown, B. F., The application of fracture mechanics to sec, Metals and Materials, 2 (1968) Met. Reviews, 13 (1968) pp. 171–183.



К гл. II



[1] Krafft, J. M., Crack toughness and strain hardening of steels, Appl. Materials Research, 3 (1964) pp. 88–101.

[2] Rosenfield, A. R. and Hahn, G. Т., Sources of fracture toughness, ASTM STP, 432 (1968) pp. 5–32.

[3] McClintock, F. A., Fracture testing of high strength sheet materials, Mat. Research and Standards, (1961) pp. 277–279.

[4] Broek, D., Some contributions of electron fractography to the theory of fracture, Nat. Aerospace Inst. Amsterdam TR 72029 (1972).

[5] Broek, D., Electron fractographv of cleavage, Int. J. Fracture Mechanics, 8 (1972) pp. 75–85.

[6] Carrod, R. I. and Nankivell, J. F., Sources of error in electron stereomicrography, British Journal Applied Physics, 9 (1958) pp. 214–218.

[7] Wells, О. С., Correction of errors in electron stereomicroscopy, British Journal Applied Physics, 11 (1960) pp. 199–201.

[8] Nankivell, J. F., Minimum differences in height detectable in electron stereomicroscopy, British Journal Applied Physics, 13 (1962) pp. 126–128.

[9] Beachem, C. D., Electron fractographic studies of mechanical fracture processes in metals, ASM Trans. 87 D, 2 (1965).

[10] Beachem, C. D. Microscopic fracture processes, Fracture I, pp. 243–349. Liebowitz, Ed., Academic Press (1968).

[11] Warke, W. R. and McCall, J. L., Using electron microscopy to study metal fracture, ASE paper 828 D, (1964).

[12] Phillips, A., Kerlins, V. and Whiteson, B. V., Electron fractography handbook, AFML—TDR 64–416 (1965).

[13] Ryder, D. A., The elements of fractography, AQARDograph 155 (1971).

[14] Beachem, CD. and Pelloux, R. M. N., Electron fractography — a tool for the study of micromechanisms of fracture, A STM STP381, (1965) pp. 210–244.

[15] Maillard, A., Meny, L. and Champigni, M., Comparaison de microfractographies types obtenus par microscopic a balayage et par microscopic conventionnelle, 7th Int. Congress on Electron Microscopy, Grenoble (1970). Vol. I, pp. 257–258. Also: Micron, 2 (1971) pp. 290–304.

[16] Broek, D., A study on ductile fracture, Nat. Aerospace Inst. Amsterdam TR 72021 (1972).

[17] Koda, S. et. al., Application of scanning electron microscopy to metallurgy, Jeol News, 8M (1970) 2. pp. 2–21.

[18] Pelloux, R. M. N., Erhardt, K. and Grant, N. J., Application of the scanning electron microscope to fractography, Third SEM Conference, (1970) pp. 281–287.

[19] Asbury, F. E. and Baker, C., Metallurgical applications of the scanning electron microscope, Metals and Materials, 1 (1967), 10, pp. 323–328.

[20] Johari, O., The scanning electron microscope, Metal Progress, 94 (1968) 2, pp. 147–150.

[21] Lifshin, E., Morris, W. G. and Bolon, R. B., Scanning electron microscopy and its applications in metallurgy, J. of Metals, (1969), pp. 43–50.

[22] Biggs, W. D., The brittle fracture of steel. McDonald and Evans Lid., London, (1960).

[23] Berry, J. M., Cleavage step formation in brittle fracture, ASM Transactions 51, (1959) pp. 556–588.

[24] Low, J. R., A review of the microstructural aspects of clean age fracture Fracture, 1959 (Swampscott Conference), pp. 68–90, M. I. T. (1959).

[25] Friedel, J., Propagating cracks and work harldening. Fracture 1959 (Swampscott Conference), pp. 498–532. M. I. T. (1959).

[26] Plateau, J., Henri, G. and Friedel, J., Cleavage crack propagation, Fracture, (1965) (Sendai Conference) Vol. II, pp. 597–611.

[27] Karel, V, Die Entstehung zungenartiger Stufen auf Spaltfl achen, Zeitschrift fur Metallkunde, (1969) pp. 298–302.

[28] Burghard, H. C. and Stoloff, N. S., Cleavage phenomena and topographic features, ASTM STP 436, pp. 32–58 (1967).

[29] Broek, D., The role of inclusions in ductile fracture toughness, Ens. Fracture Mechanics, 5 (1973) pp. 55–66.

[30] Broek, D., A critical note on electron fractography. Ens. Fracture Mechanics, 1 (1970) pp. 691–695.

[31] Puttick, K. E., Ductile fracture in metals, Philosophical Magazine, 4 (1959), pp. 964–969.

[32] Robers H. C., The tensile fracture of ductile metals, AIME Trans. 218, (1960) pp. 498–506.

[33] Crussard, C. et al., A comparison of ductile and fatigue fractures. Fracture (ed, by B. L. Averbach et al.) pp. 524–558, J. Wiley, New York (1959).

[34] Rosenfield, A. R., Criteria for ductile fracture of two—phase alloys. Metals and Materials and Metallurgical Reviews, (1968) pp. 29–40.

[35] Palmer, G. and Smith, G. C., Some aspects of ductile fracture in metals, Physical basis of yield and fracture, pp. 53–59. Inst. of Phys, and Phys. Soc. Conf, series 1, Oxford (1966).

[36] Olsen, R. J. and Ansell, G. S. The strength differential in two—phase alloys, ASM Trans, 62, (1969), pp. 711–719.

[37] Ruedl, E., Void formation at the interface between particles and matrix in deformed AL—AL2O3 foils, J. of Materials Science, 4, (1969) pp. 814–815.

[38] Wood, W. A., Recent observations on fatigue fracture in metals, ASTM STP 237, (1958) pp. 110–121.

[39] Tetelman, A. S., and McEvily, A. J., Fracture of structural materials, John Wiley. (1967).

[40] Cottrell, A. H. and Hull, D., Extrusion and intrusion by cyclic slip in copper Proc. Roy. Society A 242, (1957) pp. 211–217.

[41] Mott, N. F., A theory of the origin of fatigue cracks. Ada Met., 6 (1958) pp. 195–197.

[42] Schijve, J., The fatigue phenomenon in aluminium alloys. Nat. Aerospace Inst. Amsterdam TR—M—2122 (1964).

[43] Forsyth, P. J. E., A two stage process of fatigue crack growth. Crack propagation Symposium; Cranfield (1961), Vol. 1, pp. 76–94.

[44] Stubbington, C. A., Some observations on air and corrosion fatigue fracture surfaces of A1–7.5 Zn–2.5 Mg. RAE rept. CPM 4 (1963).

[45] Forsyth, P. J. E., Fatigue damage and crack growth in aluminium aloys. Acta. Met., 11 (1963) pp. 703–715.

[46] Matting, A. and Jacoby, G., Die Zerruttung metallischer Werkstoffe bei Schwingbeanspruchung in die Fractographie, Aluminium,38, 10(1962) pp. 654–661.

[47] Laird, C. and Smith, G. C., Crack propagation in high stress fatigue, The Philosophical Magazine, 7 (1962) pp. 847–853.

[48] McEvily, A. J. and Boettner, R. C., On fatigue crack propagation in f. с. с. metals. Acta Met.., 11 (1963) pp. 725–743.

[49] Schijve, J., Discussion in ASTM STP, 415 (1967) pp. 533–534.

[50] Bowles C. Q. and Broek, D., On the formation of fatigue striations, Int. J. Fracture Mechanics, 8(1972) pp. 75–85.

[51] Pelloux, R. M. N. Mechanisms of formation of ductile striations, ASM Trans. 62 (1969) pp. 281–285.

[52] Neumann, P., On the mechanism of crack advance in ductile materials. 3rd ICF Conference (1973), III, 233.

[53] Dahlberg, E. P., Fatigue crack propagation in high strength 4340 steel in humid air, ASM Trans, 58 (1965) pp. 46–53.

[54] Broek, D. and Van der Vet, W. J., Electron fractography of fatigue in a high strength steel. Nat. Aerospace Inst. Amsterdam Rept. TR 69043 (1969).

[55] Grosskreutz, J. C. and Shaw, C., Critical mechanisms in the development of fatigue cracks in 2024–T4 aluminium, Fracture 1969, pp. 620–629 Chapman and Hall (1969).

[56] Bowels, C. Q. and Shijve, J., The role of inclusions in fatigue crack initiation in an aluminium alloy, Int. J. of Fracture, 9 (1973) pp. 171–179.

[57] McEvily, A. J. and Boettner, R. C., A note on fatigue and microsctructure, Fracture of Solids, Drucker and Gilmaned., pp. 383–389, Interscience Publ. (1963).

[58] Broek, D., The effect of intermetajlic particles on fatigue crack propagation in aluminium alloys, Fracture 1969, pp. 754–764, Chapman and Hall (1969).

[59] El-Soudani, S. M. and Pelloux, R. M. N., Influence of inclusion on fatigue crack propagation in aluminium alloys. Met. Trans., 4(1973), pp. 519–531.

[60] Pelloux, R. M. N., Fractographic analysis of the influence of constituent particles on fatigue crack propagation in aluminium alloys, ASM Trans., 57 (1964) pp. 511–518.

[61] Van der Vet, W. J., Electron fractography of stress, corrosion, Nat. Aerospace Inst. Amsterdam TR—71038 (1971).

[62] Hartman, A. et al., Stress corrosion cracking in 7075 Al-alloy. Part 1, Effect of corrosive medium, Nat. Aerospace Inst. Amsterdam TR 71090 (1971).

[63] Van Lecuwen, H. P. et al., The relation between the heat treatment, microstructure and properties of AI–Zn–Mg forgings, Nat. Aerospace Inst. Amsterdam MP 70005 (1970).

[64] Van Lecuwen, H. P., A quantitative model for hydrogen induced grain boundary cracking, Corrosion, 29 (1973) pp. 197–204.



К гл. III



[I] Timoshenko, S. P. and Goodier, J. N., Тheory of elasticity, 3rd ed, McGraw-Hill (1970).

[2] Muskhelishvili, N. I., Some basic problems of the mathematical theory of elasticity, (1933). English translation, Noordhoff (1953).

[3] Westergaard, H. M., Bearing pressures and cracks., J. Appl. Mech., 61 (1939) pp. A49–53.

[4] Paris, P. C. andSih, G. C., Stress analysis of cracks, ASTM STP 391, (1965) pp. 30–81.

[5] Sih, G. C. ed., Methods of analysis and solutions of crack problems, Noordhoff (1973).

[6] Sih, G. C., On the Westergaard method of crack analysis, Int. J. Fracture Mech., 2 (1966) pp. 628–631.

[7] Eftis, J. and Liebowitz, H., On the modified Westergaard equations for certain plane crack problems, Int. J. Facture Mech., 8 (1972) pp. 383–392.

[8] Rice, J. R., Mathematical analysis in mechanics of fracture, Fracture II, pp. 192–308. Liebowitz ed., Academic Press (1969).

[9] Goodier, J. N., Mathematical theory of equilibrium of cracks, Fracture II, pp. 2–67. Liebowitz ed. Academic Press (1969).

[10] Irwin, G. R., Fracture, Handbuch der Physik, Vol. VI, pp. 551–590, Springer (1958)

[11] Koiter, W. Т., An infinite row of collinear cracks in an infinite elastic sheet, Ingenieur-Archiv, 28 (1959) pp. 168–172.

[12] Isida, M.., On the tension of a strip with a central elliptical hole, Trans, Jap. Soc. Mech. Eng., 21 (1955).

[13] Feddersen, C. E., Discussion, ASTM STP 410, (1967), pp. 77–79.

[14] Sneddon, I. N., The distribution of stress in the neighbourhood of a crack in an elastic solid, Proc. Roy. Soc. London A 187, (1946) pp. 229–260.

[15] Irwin, G. R., The crack extension force for a part-through crack in a plate, Trans. ASME, J. Appl. Mech., (1962) pp. 661–654.

[16] Green, A. E. and Sneddon, I. N., The stress distribution in the neighbourhood of a flat elliptical crack in an elastic solid, Proc. Cambridge Phil. Soc., 46 (1950) pp. 159–164.

[17] Kobayashi, A. S., Zii, M. and Hall, L. R., Approximate stress intensity factor for an embedded elliptical crack near to parallel free surfaces, Int. J. Fracture Mech., 1 (1965) pp. 81–95.

[18] Rice, J. R., The line spring model for surface flaws. The surface crack: physical problems and computational solutions, pp. 171–185. ASME (1972).

[19] Rice, J. R. and Levy, N., The part-through surface crack in an elastic plate, J. Appl. Mech., (1972). pp. 185–194.

[20] Grandt, A. F. and Sinclair, G. M., Stress intensity factors for surface cracks in bending, ASTM STP 513, (1972), pp. 37–58.

[21] Shan, R. C. and Kobayashi, A. S., Stress intensity factors for an elliptical crack approaching the surface of a semi-infinite solid, Int. J. of Fracture, 9 (1973) pp. 133–146.

[22] Underwood, J. H., Comments on previous reference, Int. J. of Fracture, 9 (1973) pp. 147–148.

[23] Shan, R. C. and Kobayashi, A. S., Stress intensity factor for an elliptical crack approaching the surface of a plate in bending, ASTM STP 513, (1972) pp. 3–21.

[24] Marrs, G. R., and Smith C. W., A study of local stresses near surface flaws in bending fields, ASTM STP 513, (1972) pp. 22–36.

[25] Newman, J. C., Fracture analysis of surface- and through-cracked sheets and plates, Eng. Fracture Mechanics, 5 (1973) pp. 667–690.

[26] Bonesteel, R. M., Fracture of thin sections containing surface cracks, Eng. Fracture Mechanics, 5 (1973) pp. 541–554.

[27] McClintock, F. A., Ductile fracture instability in shear, J. Appl. Mech., 25 (1958) pp. 582–588.



К гл. IV



[1] Irwin, G. R., Fracture, Handbuch der Physik VI, pp. 551–590, Fliigge Ed., Springer (1958).

[2] Irwin, G. R., Plastic zone near a crack and fracture toughness. Proc. 7th Sagamore Conf., p. IV–63 (I960).

[3] Dugdale D. S., Yielding of steel sheets containing slits, /. Mech. Phus. Sol., 8 (1960) pp. 100–108.

[4] Burdekin, F. M. and Stone, D. E. W., The crack opening displacement approach to fracture mechanics in yielding materials, J. Strain Analysis, 1 (1966) pp. 145–153.

[5] Barenblatt G. I., The mathematical theory of equilibrium of cracks in brittle fracture, Advances in Appl. Mech., 7 (1962) pp. 55–129.

[6] Bilby, B. A., Cottrell, A. H. and Swinden, K. H., Teh spread of plastic yield from a notch, Proc. Roy. Soc. A 272, (1963) pp. 304–310.

[7] Bilby, B. A. and Swinden, К. Н., Representation of plasticity at notches by linear dislocation arrays, Proc. Roy. Soc. A 285, (1965) pp. 22–30.

[8] McClintock, F. A. and Irwin, G. R., Plasticity aspects of fracture mechanics, ASTM STP 381, (1965) pp. 84–113.

[9] Duffy, A. R. et al., Fracture design practice for pressure piping, Fracture I, pp. 159–232. Liebowitz ed., Academic Press (1969).

[10] Rooke, D. P., Elastic yield zone zound a crack tip, Royal Aircr. Est., Farnborough, Tech. Note CPM 29 (1963).

[11] Jacobs, J. A., Relaxation methods applied to the problem of plastic flow
Phil. Mag., F 41 (1950) pp. 349–358.

[12] Stimspon, L. D. and Eaton D. M., The extent of elastic-plastic yielding at the crack point of an externally notched plane stress tensile specimen, Aer. Res. Lab., Australia, Rept. ARL 24 (1961).

[13] Hult, J. A. and McClintock, F. M., Elastic-plastic stress and strain distribution around sharp notches under repeated shear, IXth Int. Congr. Appl. Mech., 8 (1956) pp. 51–62.

[14] McClintock, F. A. Ductile fracture instability in shear, J. Appl. Mech., 25 (1958) pp. 582–588.

[15] McClintock, F. A., Discussion to fracture testing of high strength sheet materials, Mat. Res. and Standards, 1 (1961) pp. 277–279.

[16] Tuba, I. S., A method of elastic-plastic plane stress and strain analysis, J. Strain Analysis, 1 (1966) pp. 115–122.

[17] Rice, J. R. and Rosengren, G. F., Plane strain deformation near a crack tip in a power-law hardening material, J. Mech, Phys. Sol., 16 (1968) p. 1.

[18] Bateman, D. A., Bradshaw, F. J. and Rooke, D. P., Some observations on surface deformation round cracks in stressed sheets, Roy, Aircr. Est. Farnboroueh TN–CPM 63 (1964).

[19] Underwood, J. H. and Kendall, D. P., Measurement of plastic strain distributions in the region of a crack tip, Exp. Mechanics, (1969) pp. 296–304.

[20] Hahn, G. T. and Rosenfield, A. R., Local yielding and extension of a crack under plane stress, Ada. Met., 13 (1965) pp. 293–306.

[21] Hahn, G. Т., Hoagland, R. G. and Rosenfield, A. R., Local yielding attengding fatigue crack growth, Met. Trans., 3 (1972) pp. 1189–1196.

[22] Hahn, Q. Т. and Rosenfield, A. R., Plastic flow in the locale on notches and cracks in Fe–3Si steel under conditions approaching plane strain, Rept. To Ship structure Committee (1968).

[23] Broek, D., A study on ductile fracture, Nat. Aerospace Inst. Amsterdam, Rept. TR 71021 (1971).

[24] Dixon, J. R., Stress and strain distributions around cracks in sheet materials having various work hardening characteristics, Int. J. Fract. Mech., 1 (1965) pp. 224–243.

[25] De Koning, A. U., Results of calculations with TRIM 6 and TRIAX 6 elastic-plastic elements, Nat. Aerospace Inst. Amsterdam- Rept. MP 73010 (1973).

[26] Rice, J. R., The mechanics of crack tip deformation and extension by fatigue, Brown University rept. NSF GK-286/3 (1966).

[27] Swedlow, J. L., Williams, M. L., and Yang W. H., Elastic-plastic stresses and strains in cracked plates, 1st ICF Conf., I, pp. 259–282 (1965).

[28] Gerberich, W. W. and Swedlow, J. L., Plastic strains and energy density in cracked plates. Experiments. Exp. Mech., 4 (1964) pp. 335–344.

[29] Gerberich, W. W. and Swedlow, J. L., Plastic strains and energy density in cracked plates. Theory, Exp. Mech., 4 (1964) pp. 345–351.

[30] Oppel, G. U. and Hill, P. W., Strain measurements at the root of cracks and notches, Exp. Mechanics, 4 (1964) pp. 206–214.

[31] Hahn, G. T. and Rosenfield, A. R., Experimental determination of plastic constraint ahead of a sharp crack under plane-strain conditions, ASM Trans., 59 (1966) pp. 909–919.

[32] Allen, F. C., Effect of thickness on the fracture toughness of 7075 aluminium in the T6 and T73 conditions, ASTM STP 486, (1971), pp. 16–38.

[33] Feddersen, С. Е. et al., An experimental and theoretical investigation of plane stress fracture of 2024–T351 Al-allpy, Battelle Columbus rept. (1970).

[34] Broek, D., The residual strength of light alloy sheets containing fatigue cracks, Aerospace Proceedings 1966, pp. 811–835, McMillan (1966).

[35] Christensen, R. H. and Denke, P. H., Crack strength and crack propagation characteristics of high strength materials. ASD–TR–61–207 (1961).

[36] Weiss, V. and Yukawa, S., Critical appraisal of fracture mechanics, ASTM STP 381, (1965) pp. 1–29.

[37] Bluhm, J. I., A model for the effect of thickness on fracture toughness, ASTM Proc., 61 (1961) pp. 1324–1331.

[38] Sih, G. C. and Hartranft, R. J., Variation of strain energy release rate with plate thickness, Int. J. Fracture, 9 (1973) pp. 75–82.

[39] Anderson, W. E., Some designer oriented views on brittle fracture, Battelle Northwest rept. SA-2290 (1969).

[40] Isherwood, D. P. and Williams, J. G., The effect of stress-strain properties on notched tensile fracture in plane stress, Eng. Fract. Mech., 2 (1970) pp. 19–35.

[41] Broek, D. and Vlieger, H., The thickness effect in plane stress fracture toughness, Nat. Aerospace Inst. Amsterdam, Rept. TR 74032 (1974).

[42] Broek, D., Fail safe design procedures, Agard Fracture Mechanicks Curvey, Chapter II (1974). [43] Irwin, G. R., Fracture mode transition of a crack traversing a plate, J. Basic. Eng., 82 (1960) pp. 417–425.

[44] Srawley, J. E. and Brown, W. F., Fracture toughness testing methods, ASTM STP 381 (1965) p. 133–196.

[45] Broek, D., The effect of sheet thickness on fracture toughness, Nat. Aerospace Inst. Amsterdam, Rept. TR–M–2160 (1966).



К гл. V



[1] Griffith, A. A., The phenomena of rupture and flow in solids, Phil. Trans. Roy. Soc. London A 221, (1921) pp. 163–197.

[2] Griffith, A. A., The theory of rupture, Proc. 1st Int. Congress Appl. Mech., (1924) pp. 55–63, Biezeno, Burgers Ed. Waltman (1925).

[3] Irwin, G. R., Fracture. Handbuch der Physik VI, pp. 551–590, Fliigge, Ed Springer (1958).

[4] Sanders, J. L., On the Griffith-Irwin fracture theory. ASME Trans 27 Et (1961) pp. 352–353.

[5] Eshelby J. D., Stress analysis of cracks, ISI publication, 121 (1968) pp. 13 — 48.

[6] Irwin, G. R., Fracture dynamics, Fracturing of metals, pp. 147–166. ASM publ. (1948).

[7] Orowan, E., Energy criteria of fracture. Welding Journal, 34 (1955) pp. 157s–160s.

[8] Wnuk, M. P., Subcritical growth of fracture, Int. J. Fracture Mech., 7 (1971) pp. 383–407.

[9] Raju, K. N., On the calculation of plastic energy dissipation rate during stable crack growth, Int. J. Fracture Mech., 5 (1969) pp. 101–112.

[10] Broek, D., The residual strength of light alloy sheets containing fatigue cracks, Aerospace Proc. 1966, pp. 811–835. McMillan (1967).

[11] Broek, D., The energy criterion for fracture of sheets containing cracks, Appl. Mat.; Res., 4 (1965) pp. 188–189.

[12] Krafft, J. M., Sullivan, A. M. and Boyle, R. W., Effect of dimensions on fast fracture instability of notched sheets, Proc. of the crack-propagation symposium I, pp. 8–28. Cranfield (1961).

[13] Srawley, J. E. and Brown, W. F., Fracture toughness testing methods, ASTM STP381, (1965) pp. 133–195.

[14] Mostovoy, S., Crosley, P. B. and Ripling E. J., Use of crack-line loaded specimens for measuring plane-strain fracture toughness, J. of Materials, 2 (1967) pp. 661–681.

[15] Srawley, J. E., Jones, M. H. and Gross, В., Experimental determination of the dependence of crack extension force on crack length for a single-edge-notch tension specimen, NASA TN D–2396 (1964).

[16] Schra, L., Boerema, P. J. and Van Leeuwen, H. P., Experimental determination of the dependence of compliance on crack tip configuration of a tapered DCB specimen, Nat. Aerospace Ins. Amsterdam, Rept TR 73025 (1973).

[17] Ottens, H. H. and Lof, C. J., Finite element calculations of the compliance of a tapered DCB specimen for different crack configrations, Nat. Aerospace Inst. Amsterdam Rept. TR 72083 (1972).

[18] Forman, R. G., Effect of plastic deformation on the strain energy release rate in a centrally notched plate subjected to uniaxial tension, ASME paper 65–WA/MET–9 (1965).

[19] Rice, J. R., A path independent integral and the approximate analysis of strain concentrations by notches and cracks, /. Appl. Mech., (1968) pp. 379– 386.

[20] Landes, J. D. and Begley, J. A., The effect of specimen geometry on /rc, ASTM STP 514, (1972), pp. 24–39.

[21] Begley, J. A. and Landes, J. D., The./-integral as a fracture criterion, A STM STR 514, (1972), pp. 1–20.

[22] Bucci, R. J., Paris, P. C., Landes, J. D. and Rice, J. R., /–integral estimation procedures, ASTM STP 514, (1972) pp. 40–69.

[23] Hayes, D. J., Some applications of elastic-plastic analysis of fracture mechanics, Ph. D. disertation, Imperial College, London, (1970).

[24] Kobayashi, A. S., Chiu, S. T. and Beeuwkes, R., A numerical investigation on the use of /–integral, Eng. Fracture Mech., 5 (1973) pp. 293–305.



Дополнительная

[25] Swedlow, J. L., On Griffith's theory of fracture, Int. J. Fracture Mech., 1 (1965) pp. 210–216.

[26] Sih, G. C. and Liebowitz, H., On the Griffith energy criterion for brittle fracture, Int. J. Solids and Structures, 3 (1967) pp. 1–22.

[27] Willes, J. R., A comparison of the fracture criteria of Griffith and Baren-blatt, J. Mech.; Phys. Sol., 15 (1967) pp. 151–162.

[28] Williams, J. G., and Isherwood, D. P., Calculation of the strain energy release rate of cracked plates by an approximate method, /. Strain Anatusis, 3 (1968) pp. 17-22.

[29] Gliicklich, J. and Cohen, L. J., Strain energy and size effects in a brittle material. Mat. Res. and Stand., 8 (1968) pp. 17–22.

[30] Rice, J. R. and Drucker, D. C., Energy changes in stressed bodies due to crack growth, Int. J. Fract. M. ech., 3 (1967) pp. 19–27.

[31] Havner, K- S. and Qlassco, J. В., On energy balance criteria in ductile fracture, Int. J. Fract. Mech., 2 (1966) pp. 506–525.

[32] Broberg, К- В., Crack growth criteria anb non-linear fracture mechanics, J. Mech. Phys. Sol., 19 (1971) pp. 407–418.

[33] Boyd, G. H., From Griffith to COD and beyond, Eng. Fract. Mech., 4 (1972) i pp. 459–482,



К гл. VI



[1] Mott, N. F., Fracture of metals: some theoretical considerations, Engineering, 165 (1948) pp. 16–18.

[2] Bluhm, J. I., Fracture arrest, Fracture V, pp. 1–63, Liebowitz ed., Academic Press (1969).

[3] Berry, J. P., Some kinectic considerations of the Griffith criterion for fracture J. Mech. Phys. Solides, 8(1960) pp. 194–216.

[4] Hoagland, R. G., A double cantilever beam specimen for determining the plane strain fracture toughness of metals, Battelle Northwest Rept. 168 (1965).

[5] Broek, D. and Nederveen, A. The influence of the loading rate the residual Strength of aluminium alloy sheet specimens, Nat. Aerospace Inst. Amsterdam Rept TR-M-2154 (1964).

[6] Roberts, D. K. and Wells, A. A., The velocity of brittle fracture, Engineering, 171 (1954) pp. 820–821.

[7] Kanninen, M. F., An estimate of the limiting speed of a propagating ductile crack, J. Mech. Phys. Solids, 16 (1968) pp. 215-228.

[8] Kanninen, M. F., Mukherjee, A. K., Rosenfield, A. R. and Hahn, G. Т., The speed of ductile crack propagation and the dynamics of flow in metals, Symp. on mech, behaviour of materials under dynamic loads, San Antonio (1967).

[9] Duffy, A. R.; et al., Fracture design practices for pressure piping, Fracture V, pp. 159–232, Liebowitz ed., Academic Press (1969).

[10] Yoffe, E. H., The moving Griffith crack, Phil. Mag. Ser., 7,42 (1951) pp. 739–750.

[11] Cotterell, В., On the nature of moving cracks, ASME Trans E 31, (1964), pp. 12–14.

[12] Nilsson, F., Dynamic stress intensity factors for finite strip problems, Int J. Fracture Mech., 8 (1972) pp. 403–411.

[13] Broberg, К. В., The propagation of a brittle crack. Arkiv Fysik,18 (1960) pp. 159-192.

[14] Akita, Y. and Ikeda, K., Measurement of crack speed, Trans. Techn. Res Inst., Tokyo, Rept 37 (1959).

[15] Baker, B. R., Dynamic stresses created by a moving crack, /. Appl. Mech. E29, (1962) pp. 449–458.

[16] Wells, A. A. and Post, D., The dynamic stress distribution surrounding a running crack – A photoelastic analysis, Proc. SESA, 16 (1958) pp. 69–92.

[17] Bradley, W. B. and Kobayashi, A. S., An investigation of propagating cracks by dunamic photoelasticity, Experimental Mechanics, (1970) pp. 106–113.

[18] Kalthoff, J. F., On the characteristic angle for crack branching in brittle materials, Int. J. Francture Mech., 7 (1971) pp. 478–480.

[19] Maxey, W. A. et al., Ductile fracture initiation, propagation and arrest in cylindrical pressure vessels, ASTM STP 518, (1972), pp. 70–81.

[20] Maxey, W. A. et al., Exprimental investigation of ductile fracture in piping, Battelle Columbus report.

[21] Hahn, G. Т., Hoagland, R. G., Kanninen, M. F., and Rosenfield, A. R., The characterization of fracture arrest in a structural steel, 2nd Int. Conf. on pressure vessel technology, San Antonio (1973).

[22] Yoshiki, M., Kanazawa, T. and Machida, S. Some basic considerations on crack arresting mechanisms in welded steel structures, Dept. Naval Architecture, Tokyo (1965).

[23] Hahn, G. Т., Hoagland, R. G. and Rosenfield, A. R., The variation of Kic with temperature and loading rate, Metallurgical Trans. 2 (1971) pp. 537–541.

[24] Krafft, J. M. and Sullivan, A. M., Effects of speed and temperature on crack toughness and yield strength, ASM Trans, 56 (1963) pp. 160–175.

[25] Krafft, J. M. and Irwin, G. R., Crack velocity considerations ASTM STP 381, (1965). pp. 114–129.

[26] Malkin, J. and Tetelman, A. S., Relation between Kcand microscopic strength for low alloy steels, U. S. Army Res. Off., Durham, Tech. Rep. 1 (1969),

[27] Dvorak, G. J. and Tang, H. C., Influence of material properties on dynamic fracture toughness of steels, Eng. Fracture Mech., 5 (1973) pp. 91 – 106.

[28] Server, W. I., and Tetelman, A. S., The use pre-cracked Charpy specimens, to determine dynamic fracture toughness, Eng. Fracture Mech., 4 (1972) pp. 367–375.



К гл. VII



[1] Anon., The standard Klc — test, ASTM Standards 31, (1969) pp. 1099–1114.

[2] Anon., The standard Kic-test, ASTM STP 463, (1970) pp. 249-269

[3] Srawley, J. E. and Brown, W. F., Fracture toughness testing methods, ASTM STP 381, (1965) pp. 133–145.

[4] Brown W. F. and Srawley, J. E., Plane strain crack toughtness testing ot high strength metallic materials. ASTM STP 410, (1966).

[5] Srawley, J. E., Plane strain fracture toughness, Fracture IV, pp. 45–68. Liebowitz ed., Academic Press (1969).

[6] Liebowitz, H. and Eftis, J., On non-linear effects in fracture mechanics, Eng. Fract. Mech., 3 (1971) pp. 267–281.

[7] Liebowitz, H. and Eftis, J., Correcting for non-linear effetcs in fracture toughness testing, Nuclear Engineering &. Design, 18 (1972) pp. 457–467.

[8] Tiffany, C. F. and Masters, J. N.. Applied fracture mechanics, A STM STP 381, (1965) pp. 249–278.



К гл. VIII



[I] Broek, D., The residual strength of light alloy sheets containing fatigue cracks, Aerospace Proeceedings, 1966, pp. 811–835, McMillan, London, 1966.

[2] Walker, E. K., A study of the influence of geometry on the strength of fatigue cracked panels, AFFDL-TR-66-92 (1966).

[3] Christensen, R. H. and Denke, P. H., Crack strength and crack propagation characteristics of high strength materials, ASD-TR-61-207 (1962).

[4] Allen, F. C., Effect of thickness on the fracture toughness of 7075 aluminium in the T6 and T73 conditions, ASTM STP 486, (1971), pp. 16–38.

[5] Feddersen, C. E., Evaluation and prediction of the residual strength of center cracked tension panels, ASTM STP 486, (1971) pp. 50–78.

[6] Broek, D., Concepts in fail safe design of aircraft structures, DMIC memorandum 252 (1971).

[7] Broek, D. and Jacobs, F. A., The static strength of aluminium alloy sheet containing blunt notches, Nat. Aerospace Inst. Amsterdam, TR-M-2149 (1965).

[8] Feddersen, C. E. and Hylen, W. S., Fracture and fatigue-crack propagation characteristics of 7075-T7351 aluminum alloy sheet and plate, Battelle Columbus (1970).

[9] Feddersen, C. — E., Simonen, F. A., Hulbert, I. E. and Hyler, W. S., An experimental and theoretical investigation of plane stress fracture of 2024-T351 aluminium alloy, Battelle Mem. Inst. Rep. (1970).

[10] Hudson, C. M., Effects of stress ratio on fatigue crack growth in 7075-T6 and 2024-T3 Al-alloy specimens, NASA TN-D-5390 (1969).

[11] Eichenberger, T. W., Fracture resistance data summary, Boeing Rept D2-20947
(1962).

[12] Kuhn: P. and Figge, I. E. Unified notch-strength analysis for wrought Al-alloys, NASA TN-D-1259 (1962).

[13] Kuhn, P., Residual strength in the presence of fatigue cracs, Presentation to Agard S and M panel, Turin, (1967).

[14] Crichlow, W. J., The ultimate strength of damaged structures. Full Scale Fatigue testing of Aircraft Structures, pp. 149–209. Ed. by Plantema and Schiive, Pergamon (1961).

[15] Christensen, R. H., Cracking and fracture in metals and structures, Cranfield Symposium (1961) Vol. II, pp. 326–374.

[16] Barrois, W., Manual on fatigue of structures, Agard-Man-8-70 (1971).

[17] Broek, D., The residual strength of cracked sheet and structures, Nat. Aerospace Inst. Amsterdam, Report TNM-2135 (1964).

[18] McClintock, F. A., Ductile fracture instability in shear, J. Applied Mechanics, 25 (1958) pp. 581–588.

[19] Raju, K. N., On the calculation of plastic energy dissipation during stable crack growth, Int. J. Fract. Mech., 5 (1969) pp. 101–112.

[20] Wntik, M. P., Subcritical growth of fracture, Int. J. Fract. Mech., 1 (1971) pp. 383–407.

[21] Krafft, J. M., Sullivan, A. M. and Boyle, R. W., Effect of dimensions on fast fracture instability of notched sheets, Cranfield Symposium, (1961), Vol. I, pp. 8–28.

[22] Broek, D., The energy criterion for fracture of sheets, Applied Materials Research, (1965) pp. 188–189. [23] Broek, D., The effect of finite panel size on residual strength, Nat. Aerospace Inst. Amsterdam, TR-M-2152 (1965).

[24] Broek, D. and Vlieger, H., The thickness effect in plane stress fracture toughness, Nat. Aerospace Inst. Amsterdam, Rept. 74032 (1974).

[25] Various authors, Fracture toughness evaluation by R curve methods, ASTM STP 527 (1973).

[26] Heyer, R. H. and McCabe D. E., Plane stress fracture toughness testing using a crackline-loaded specimen, Eng. Fract. Mech., 4 (1972) pp. 393–412.

[27] Heyer, R. H. and McCabe, D. F., Crack growth resistance in plane-stress fracture testing, Eng. Fract. Mech., 4 (1972) pp. 413–430.

[28] Broek, D., Artificial slow crack growth under constant stress – The R curve concept in plane stress, Eng. Fract. Mech., 5(1973) pp. 45–53.

[29] Bluhm J. I., A model for the effect of thickness on fracture toughness, ASTM Proc. 61, (1961), pp. 1324–1331.

[30] Isherwood, D. P. and Williams, J. G., The effect of stress-strain properties on notched tensile failure in plane stress, Eng. Fract. Mech., 2 (1970) pp. 19–35.

[31] Anderson, W. E., Some designer-oriented views on brittle fracture, Battelle Northwest Rept. SA-2290 (1969).

[32] Sin, G. C. and Hartranft, R. J., Variation of strain energy release rate with plate thickness, Jnt. J. Fract. Mech., 9 (1973) pp. 75–82.

[33] Rooke, D. P. and Bradshaw, F. J., A study of crack tip deformation and a derivation of fracture energy, Fracture, 1969, pp. 46–57. Chapman and Hall (1969).

[34] Broek, D., The residual strength of aluminium alloy sheet containing fatigue cracks or saw cuts, Nat. Aerospace Inst. Amsterdam Rept. TR-M-2I43 (1965).

[35] ASTM Committee, Fracture testing of high strength sheet materials, 3rd committee report. Mat. Res. and Standards 1, 11 (1961) pp. 877–885.

[36] Dixon, J. R. and Strannigan, J. S., Stress distribution and buckling in thin sheets with central slits, Fracture 1969, pp. 105–108. Chapman and Hall (1969).

[37] Forman, R. G., Experimental program to determine the effect of crack buckling and specimen dimensions on fracture toughnes of thin sheet materials, AFFDL-TR-65-146 (1966).

[38] Carlson, E. L., Zielsdorff, G. F. and Harrison, J. C., Buckling in thin cracked sheets. Air Force Conf. on Fatigue and Fracture, AFFDL-TR-70-144 (1970). pp. 193–205.

[39] Trotman, C. K-, Discussion, Cranfield Symposium (1961), Vol. II, p. 539.



К гл. IX



[1] Wells, A. A., Unstable crack propagation in metals-cleavage and fast fracture. Proc. Crack propagation Symposium, Cranfield (1961) pp. 210–230.

[2] Wells, A. A., Application of fracture mechanics at and beyond general yielding, British Welding Research, Ass. Rep. M13, (1963).

[3] Burdekin, F. M. and Stone, D. E. W. The crack opening displacement approach to fratcture mechanics in yielding, J. Strain Analysis, 1 (1966), pp. 145–153.

[4] McClintock, F. A. and Irwin, G. R., Plasticity effects of fracture mechanics, ASTM STP 381, (1965), pp. 84–113.

[5] Rice, J. R., A path independent integral and the approximate analysis of strain concentrations by notches and cracks, /. Appl. Mech., 35 (1968) pp. 379–386.

[6] Rice, J. R. and Johnson, M. A., The role of large crack tip geometry changes in plane strain fracture, Inelastic behaviour of solids, Kanninen Ed., pp. 641 – 672, McGraw-Hill (1970).

[7] Levy N. et al., Small scale yielding near a crack in plane strain: a finite element analysis, Int. J. Fract. Mech., 7 (1971) pp. 143–156.

[8] Sumpter, J. G. et al., Post yield analysis and fracture in notch tension pieces,

3rd 1CF Conf. Munich (1973).

[9] Rooke, D. P. and Bradsahw, F. J., A study of crack tip deformation and a derivation of fracture energy, Fracture 1969, pp. 46–57, Chapman and Hall (1969).

[10] Parry, G. W. and Mills, R. G., Relations between crack opening displacement and hoop stress in zircalloy-2 pressure tubes containing axial defects, /. Strain Analysis, 3 (1968) pp. 159–162.

[11] Bowles, C. Q., Strain distribution and deformation at the crack tip in low cycle fatigue, Army Mat. and Mech. Res. Center, Watertown, Mass. Rept. AMMRC CR 70-23 (1970).

[12] Robinson, J. N. and Tetelman, A. S., The critical crack-tip opening displacement and microscopic and macroscopic fracture criteria for metals, Un. Cal. Los Angeles Raep. Eng. 7360 (1973).

[13] Broek, D. and Vlieger, H., The thickness effect in plane stress fracture tounghnes, Nat. Aerospace Lab. TR 74032 (1974).

[14] Nichols, R. W. et al.. The use of critical COD techniques for the selection of fracture resistant material, Pros. Symp. Fract. toughness concepts weldable structural steel, pp. F1-F113, Chapman and Hall (1969).

[15] Burdekin, F. M., Crack opening displacement –A review of principles and methods, Proc. Symp. Fract. toughness concepts for weldable structural steel, pp. Cl–C12, Chapman and Hall (1969).

[16] Anon., Fracture toughness testing of metallic materials, Part II. Crack opening displacement (COD) testing, NDACSS (CODA) Group (1970).

[17] Ingham, Т., Egan, G. R. and Elliott, D., The effect of geometry on the interpretation of COD test data, Conf. on Practical Applications of fracture mechanics to pressure vessel technology (1970).

[18] Harrison, T. C., Relation between surface and defect tip measurements of COD as a function of specimen geometry, Gas Council Rept Т 311 (1970).

[19] Veerman, C. C. and Muller, Т., The location of the apparent rotationalaxis in notched bend testing, Eng. Fracture Mechanics, 4 (1972) pp. 25–32.

[20] Kanazawa, T. et al., A study of the COD concept for brittle fracture initiation, Fracture 1969, pp. 1 – 14, Chapman and Hall (1969).

[21] Knott, J. F., Effect of notch depth on the toughness of mild steel, Fracture 1969, pp. 205–218, Chapman and Hall (1969).

[22] Smith, R. F. and Knott, J. F., COD and fibrous fracture in mild steel, Conf. on practical application of fracture mechanics to pressure vessel technology, (1971) pp. 65–75.

[23] Fearnebough, G. D. et al., The role of stable ductile crack growth in the failure of structires, Conf. on practical application of fracture mechanics to pressure vessel technology (1971) pp. 119–128.

[24] Anctil, A. A., Kula, E. B. and Di Cesare, E., Electric potential technique for determining slow crackgrowth, A STM Proceedings, 63 (1963) pp. 799–810.

[25] Fry, A., Strain figures (Kraftwirkungsfiguren) in ingot iron and steel as brought out by a new etching process, Stahl und Eisen, 41 (1921), pp. 1093 – 1097.

[26] Srawley, J. E., Swedlow, J. L. and Roberts, E., On the sharpness of cracks compared with Wells' COD method, Int. J. Fract. Mech., 6 (1970) pp. 441 –444.

[27] Wells, A. A. and Burdekin, F. M., Discussion to [26], Int. J. Fract. Mech., 7 (1971) pp. 233–241.

[28] Srawley J. E., Swedlow, J. L. and Roberts, E., Responde to [27] Int. J. Fract. Mech., 7 (1971) pp. 242–246.

[29] Wells, A. A., Crack opening displacements from elastic-plastic analysis of externally notched bars, Eng. Fracture Mech., 1 (1969) pp. 399–410.

[30] Elliott, D., Walker, E. F. and May, M. J., The determination and applicability of COD test data, Conf. practical applications of fracture mechanics to pressure bessel technology (1971).

[31] Hahn, G. Т., Sarrate, M. and Rosenfield, A. R., Criteria for crack extension in cylindrical pressure vessels, Int. J. Fract. Mech., 5 (1969) 187–210.



К гл. Х



[1] Schijve, J., Significance of fatigue cracks in micro-range, ASTM STP 415, (1967), pp. 415–459.

[2] Liu, H. W. and linno, N., A mechanical model for fatigue crack propagation, Fracture (1969), pp. 812–824, Chapman and Hall (1969).]

[3] McClintock, F. A., On the plasticity of the growth of fatigue cracks, Fracture of solids, pp. 65–102, John Wiley (1963).

[4] Weertman, J., Rate of growth of fatigue cracks calculated from the theory of infinitesimal dislocations distributed in a plane, Proc. 1st Fract. Conf. Sendai, (1966) Vol. I, pp. 153–164.

[5] Schijve, J., The accumulation of fatigue damage in aircraft materials and structures, AGAR Dograph № 157 (1972).

[6] Paris, P. C. The growth of fatigue cracks due to variations in load, Ph. D. Thesis, Lehigh University (1962). [7] Paris, P. C., Gomez, M. P. and Anderson, W. E., A rational analytic theory of fatigue, The Trend in Engineering, 13 (1961). pp. 9–14.

[8] Broek, D., The effect of intermetallic particles on fatigue crack propagation in aluminium alloys, Fracture (1969). pp. 754–764, Chapman and Hall (1969).

[9] Wilhem, D. P., Investigation of cyclic crack growth transitional behavior, ASTM STP 415, (1967), pp. 363–383.

[10] Hudson, C. M., Fatigue crack propagation in several titanium and stainless steel alloys and one super alloy, NASA TN-D-2331 (1964).

[11] Paris, P. C., Bucci, R. J., Wessel, E. Т., Clark, W. G. and Mager, T. R., Extensive study of low fatigue crack growth rates in A533 and A508 steels, ASTM STP 513, (1972), pp. 141 – 176.

[12] McClintock, F. A., Discussion, ASTM STP 415, (1967) pp. 170–174.

[13] Hahn, G. T., Sarrat, H. and Rosenfield, A. R., The nature of the fatigue crack plastic zone. Air Force Conf. on Fatigue and Fracture (1969), AFFDL-TR-70-144 (1970) pp. 425–450.

[14] Schijve, J., Analusis of the fatigue phenomenon in aluminium alloys. Nat. Aerospace Inst. Amsterdam TR-M-2122 (1964).

[15] Pelloux, R. M. N., Mechanism of formation of ductile striations, ASM Trans. 62, (1969) pp. 281–285.

[16] Bowles, C. Q. and Broek, D., On the formation of fatigue striations. Int. J. Fract. Mech., 8 (1972) pp. 75–85.

[17] Bates, R. C. and Clark, W. G., Fractography and fracture mechanics, ASM Trans. 62, (1969) pp. 380–388.

[18] Pelloux, R. M. N., Review of theories and laws of fatigue crack propagation? Air Force Conf. on Fatigue and Fracture (1969). AFFDL-TR-70-144 (1970) pp. 409–416.

[19] Broek, D. and Schijve, J., The influence of the mean stress on the propagation of fatigue cracks in aluminium alloy sheets, Nat. Aerospace Inst. Amsterdam. TR-M-2111 (1963).

[20] Erdogan, F., Crack propagation theories, NASA-CR-901 (1967).

[21] Walker, E. K-, Effects of environments and complex load history on fatigue life, ASTM STP 462, (1970) pp. 1 – 14.

[22] Walker, E. K-, An effective strain concept for crack propagation and fatigue with specific application to biaxial stress fatigue. Air Force Conf. on Fracture and Fatigue (1969). AFFDL-TR-70-144 (1970) pp. 225–233.

[23] Forman, R. G., Kearney, V. E. and Engle, R. M., Numerical analysis of crack propagation in a cyclic-loaded structure. ASME Trans. J. Basic Eng. 89D, (1967), p. 459.

[24] Schijve, J., NLR data, To be published.

[25] Elber, W., The significance of fatigue crack closure, ASTM STP 486, (1971) pp. 230–242.

[26] Figge, I. E. and Newman, J. C., Fatigue crack propagation in structures with simulated rivet forces ASTM STP 415, (1967) pp. 71–93.

[27] Hartman, A., On the effect of oxygen and water vapour on the propagation of fatigue cracks in an Al alloy, Int. J. Fracture Mech., 1 (1965) pp. 167– 188.

[28] Brandshaw, F. J. and Wheeler, C., Effect of environment and frequency on fatigue cracks in Al alloys, Int. J. Fract. Mech., 5 (1969) pp. 255–268.

[29] Frost, N. E., The effect of environment on the propagation of fatigue cracks in mild steel, Appl. Mat. Res., 3 (1964) p. 131.

[30] Meyn, D. A., Frequency and amplitude effects on corrosion fatigue cracks in a titanium alloy, Met. Trans., 2 (1971) pp. 853–865.

[31] Meyn, D. A., The nature of fatigue crack propagation in air and wacuum for 2024 aluminium, ASM Trans., 61 (1968) pp. 52–61.

[32] Achter, M. R., Effect of environment on fatigue cracks, ASTM STP 415, (1967) pp. 181–204.

[33] Wei, R. P., Some aspects of environment enhanced fatigue crack growth, Eng. Fract. Mech., 1 (1970) pp. 633–651.

[34] Hartman, A. and Schijve, J., The effects of environment and load frequency on the crack propagation law for macro fatigue cracks, Ang. Fract. Mech., 1 (1970) pp. 615–631.

[35] Schijve, J. and Broek, D., The effect of the frequency of an alternating load on the propagation of fatigue cracks, Nat. Aerospace Inst. Amsterdam TR-M-2092 (1961).

[36] Schijve, J. et al., Fatigue crack growth in aluminium alloy sheet under flight simulation loading. Effects of design stress level and loading frequency, Nat. Aerospace Inst. Amsterdam TR 72018 (1972).

[37] Schijve, J. and De Rijk, P., The fatigue crack propagation in 2024-T3 alclad sheet materials of seven different manufacturers, Nat. Aerospace Inst. Amsterdam TR-M-2162 (1966).

[38] Broek, D. and Schijve, J., Fatigue crack growth; effect of sheet thickness, Aircraft Engineering, 38 (1966) pp. 31–33.

[39] Donaldsen, D. R. and Anderson, W. E., Crack propagation behaviour of some airframe materials, Cranfield Symposium (1960), Vol. II, pp. 375–441.

[40] Francis, P. H., The growth of surface microcracks in fatigue of 4340 steel, ASME Trans. J. Basic Eng., (1969) pp. 770–779.

[41] Hall, L. R., On plane-strain cyclic flaw growth rates, Enginneering Fracture Mech., 3 (1971) pp. 169–189.

[42] Van Leeuwen, H. P. and Schra, L., Heat treatment studies of Al alloy 7079 forgings, Nat. Aerospace Inst. Amsterdam TR 69058 (1969).

[43] Van Leeuwen, H. P. et al. Heat treatment studies of Al-Zn-Mg alloy forgings of the DTD 5024-type, Nat. Aerospace Inst. Amsterdam TR 72032 (1972).

[44] Broek, D. and Bowles, C. Q., The effect precipitate size on crack propagation and fracture of an Al-Cu-Mg alloy, J. Inst. Metals., 99 (1971) pp. 255–257.

[45] Lachenaud, R., Fatigue strength and crack propagation in AU 2 GN alloy as a function of temperature and frequency, in: Current Aeronautical Fatigue Problems, pp. 77–102. Schijve et al., Ad., Pergamon (1965).

[46] James, C. A. and Schwenk, E. В., Fatigue crack growth in 304 stainless steel at elevated temperature, Met. Trans. 2 (1971) pp. 491–503.

[47] Broek, D., Residual strength and fatigue crack growth in two aluminium alloy sheets at temperatures down to –75 °C, NLR report TR 72096 (1972).

[48] Schijve, J. and Broek, D., Crack-propagation-tests based on a gust spectrum with variable amplitude, loading, Aircraft Engineering, 34 (1962) pp. 314– 316.

[49] Hudson, C. M. and Hardrath, H. F., Investigation of the effects of variable amplitude loadings on fatigue crack propagation pattern, NASA–TN-D-1803 (1963).

[50] McMillan, J. C. and Pelloux, R. M. N., Fatigue crack propagation under program and random loads, ASTM STP 415, (1967) pp. 505–535.

[51] Hertzberg, R. W., Fatigue fracture surface appearance, ASTM STR 415 (1967) pp. — 205–225.

[52] McMillan, J. C. and Hertzberg, R. W., The application of electron fracto-graphy to fatigue studies, ASTM STP, 436 (1968) pp. 89–123.

[53] Von Euw, E. F. J., Hertzberg, R. W., and Roberts, R., Delay effects in fatigue crack propagation, ASTM STP 513, (1972) pp. 230–259.

[54] Corbly, D. M. and Packman, P. F., On the influence of single and multiple peak overloads on fatigue crack propagation in 7075–T6511 aluminum, Eng. Fracture Mechanics, 5 (1973) pp. 470–497.

[55] Schijve, J. and De Rijk, P., The effect of ground-to-air cycles on the fatigue crack propagation in 2024-T3 alclad sheet material, Nat. Aerospace Inst. Amsterdam TR-M-2148 (1965).

[56] Smith, S. H., Random-loading fatigue crack growth behavior of some aluminium and titanium alloys, ASTM STP 404, (1966) p. 76.

[57] Schijve, J., Cumulative damage problems in aircraft structures and materials, The Aeronautical Journal, 74 (1970), pp. 517–532.

[58] Morrow, J. D., Wetzel, R. H. and Topper, T. H., Labdratory simulation of structural fatigue behaviour, ASTM STP 462, (1970) pp. 74–91.

[59] Impellizzeri, L. F., Cumulative damage analysis in structural fatigue, ASTM STP 462, (1970) pp. 40–68.

[60] Habibie, B. J., Eine Berechnungsmethode zutn Vo raussagen des Fortschritts von Rissen, Messerschmitt-Bolkow–Blohm rep. UH-03-71 (1971).

[61] Wheeler, O. E., Spectrum loading and crack growth, ASME publ. 1971.

[62] Willenborg, J., Engle, R. M. and Wood, H. A., A crack growth retardation model usingan affective stress concept, AFFDL-TM-71-l-FBR (1971).

[63] Cherepanov, G. P. and Halmanov, H., On the theory of fatigue crack growth, Eng. Fracture Mech., 4 (1972) pp. 219–230.

[64] Frost, N. E. and Dixon, J. R., A theory of fatigue crack growth, Int. J. Fracture Mech., 3 (1967) pp. 301–316.

[65] Pook, L. P. and Frost, N. E., A fatigue crack growth theory, Int. J. Fracture 9 (1973) pp. 53–61.

[66] Donahue, R. J., Clark, H. M., Atanmo, P., Kumble, R. and Mcevily, A. J., Crack opening displacement and the rate of fatigue crack growth, Int. J. Fracture Mech., 8 (1972) pp. 209–219.

[67] Schwalbe, K. H., Approximate calculation of fatigue crack growth, Int. J. Fracture, 9 (1973) pp. 381–395.

[68] Adams, N. J. I., Fatigue crack closure at positive stress, Eng. Fracture Mech., 4 (1972) pp. 543–554.

[69] Neumann, P., On the mechanism of crak advance in ductile materials, 3rd ICF Conference (1973) III, 233.

[70] Hahn, Q. T. and Simon R., A review of fatigue crack growth in high strength aluminium alloys and the relevant metallurgical factors, Eng. Fracture Mech., 5 (1973) 523–540.



К гл. XI



[1] Oilman, J. J., Cleavage, ductility and tenacity in crystals, Fracture (1959) pp. 193–224, MIT-Wiley 1959.

[2] Friedel, J., Propagation of cracks and work hardening, Fracture (1959), pp. 498–523, MIT-Wiley 1959.

[3] Broek, D., Some considerations on slow crack growth, Int. J. Fracture, Mech., 4 (1968) No. 19–34.

[4] Spitzig, W. A., A fractographic feature of plane fracture. ASM Trans-Quarterly, 61 (1968) pp. 344–349.

[5] Griffis, G. A., and Spretnak, J. Z., A suggestion on the nature of the plastic stretch zone, Metallurgical Trans., 1 (1970) pp. 550–551.

[6] Various authors, Stretched zones, ASTM STP, 493 (1971).

[7] Broek, D., Correlation between stretched zone size and fracture toughness, Eng. Fracture Mechanics, in print.

[8] Broek, D., The role of inclusions in ductile fracture and fracture toughness,. Eng. Fracture, Mechanics, 5 (1973) pp. 55–66.

[9] Tanaka, J. P., Pampillo, C. A. and Low, J. R., Fractographic analysis of low energy fracture of an aluminium alloy, ASTM STP 463, (1970) pp:, 191 – 215.

[10] Hahn, G. T. and Rosenfield, A. R., Relations between microstructure and the fracture toughness of metals, 3rd ICF Conference I (1973) PL 111-211.

[11] McClintock, F. A., Discussion, ASTM STP 415, (1967) pp. 170–174.

[12] Hanh, G. T., Sarrat, M. and Rosenfield, A. R., The nature of the fatigue crack plastic zone, (Airforce conf. on fatigue and fracture 1969), AFFML-TR-70-144 (1970) pp. 425–450.

[13] Bates, R. C. and Clark, W. G., Fractography and fracture mechanics, ASM Trans. 62 (1969), pp. 380–388.

[14] Rice, J. R. and Johnson, M. A., The role of large crak tip geometry changes in plane strain fracture, Inelastic Behaviour of Solids, pp. 641–672, Kanninen et al., Ed., McGraw-Hill (1970).

[15] McClintock, F. A. et al., Ductile fracture by hole growth in shear, Int. J. Fract. Mech., 2 (1966) pp. 614–627.

[16] Krafft, J. M., Correlation of plane strain crack tougness with strain hardening. characteristics, of steels, Appl. Mat. Res., 3 (1964) pp. 88–101.

[17] Krafft, J. M., Dynamic mechanical behaviour of metal at the tip of a plane strain crack, Presented at S. W. I. Symposium on dynamic loading, san Antonio (1967),

[18] Williams, J. G. and Turner, E., The plastic instability viewpoint of crack propagation, Appl. Mat. Res., 3 (1963) pp. 144–147.

[19] Rosenfield, A. R. and Hahn, G. Т., Sources of fracture toughness, ASTM STP 432, (1968), pp. 5–32.

[20] Levy, N., Marcal, P. C., Ostegren, W. J. and Rice, J. R., Small scale yielding near a crack in plane strain: a finite element analysis, Int. J. Fract. Mech., 7 (1971) pp. 143–156.

[21] Hutchinson, J. W., Singular behaviour at the end of a tensile crack in a hardening material, J. Mech. Phys. Sol., 16 (1968) pp. 13–31.

[22] Rice, J. R., The elastic-plastic mechanics of crack extension, Int. J. Fract. Mech., 4 (1968) pp. 41–47.

[23] Rice, J. R. and Rosengren, G. F., Plane strain deformation near a crack tip in a powerlaw hardening material, J. Mech. Phys. Solids, 16 (1968) pp. 1 –12.

[24] Rice, J. R., Mathematical Analysis in Mechanics of fracture, Fracture II, pp. 192–308, Liebowitz Ed., Academic Press (1969).

[25] Broek, D., A study on ductile fracture, Nat. Aerospace Inst. Amsterdam Rept. 71021 (1971).

[26] Wanhill, R. J., Some considerations for the application of titanium alloys for commercial aircraft, Nat. Aerospace Inst. Amsterdam, Rept. TR 72034 (1972).

[27] Tetelman, A. S. and McEvily, A. J., Fracture of high strength materials, Fracture VI, pp. 137–180, Liebowitz Ed., Academic Press (1969).

[28] Kaufman, J. G., Nelson, F. G. and Holt, M., Fracture toughness of aluminium alloy plate determined wit я center-notch tension, single-edge-notch and notch-bend tests, Nat. Symp. Fracture Mechanics, Lehigh Un. (1967).

[29] Broek, D., Unpublished results.

[30] Tetelman, A. S. and McEvily, A. J., Fracture of structural materials, Wiley,. (1967).

[31] Weiss, V. and Sengupta, M., Correlation between the fracture toughness and material ductriity, 3rd ICF Conf. IV, (1973) 111-341.

[32] Wei, R. P., Fracture toughness testing in alloy development, ASTM STP 381, (1965) pp. 279–289.

[33] Payne, W. F., Incorporation of fracture information in specifications, ASTM STP 381, (1965) pp. 357–372.

[34] Enscha, S. and Tetelman, A. S., A quantitative model for the temperature, strain rate and grain size dependence of fracture toughness in low alloy steels, 3rd 1CF Conf. II (1973) 1–331.

[35] Peel, C. J. and Forsyth, P. J. E., Fracture toughness of Al-Zn-Mg-Cu alloys to DTD 5024, Royal Aircr. Est. Farnborough, Rept. TR 69011 (1969).

[36] Broek, D. et al., Applicability of fracture toygfiness data to surface flaws and to corner cracks at holes, Nat. Aerospace Inst. Amsterdam, Rept. TR 71033 (1971).

[37] Randall, P. N., Tests on surface flaw specimens, ASTM STP 410, (1967) pp. 88–125.

[38] Smith, S. H., Porter, T. R. and Sump, W. D., Fatigue crack propagation and fracture toughness characteristics of 7079 Al-alloy sheets and plates in three aged conditions, NASA CR-966 (1968).

[39] Barsom, J. M. and Rolfe, S. Т., Impact testing of metals, ASTM STP 466, (1970), p. 281.

[40] Kanazawa, T. et al., Correlation of brittle fracture strength and chevron notched Charpy impact test results, 3rd ICF Conf. Ill (1973) 11-232.

[41] Tetelman, A. S. and Server, W. L., The use of pre-cracked Charpy specimens to determine dynamic fracture toughness, Un. of California L. A. rept. UCLA-ENG 7153 (1971).

[42] Witzell, W. E. and Adsit, N. R., Temperature effects on fracture, Fracture IV, pp. 69–112, Liebowitz, Ed., Academic Press (1969).

[43] Feddersen, C. E., Moon, D. P. and Hyler, W. S., Crack behavior in D6AC steel, MCIC Rept. 72–04 (1972). [44] Christensen, R. H. and Denke, P. H., Crack strength and crack propagation characteristics of high strength steels, ASD TR-61-207 (1962).

[45] Various authors, AGARD fracture, mechanics survey.

[46] Anon., Fracture mechanics handbook, Vol. II, CMIC Document (1973).

[47] Various authors, Fracture VI, Liebowitz, Ed., Academic Press (1969).

[48] Various authors, Fracture VII, Liebowitz, Ed., Academic Press (1969).



К гл. XII



[1] Babikov, О. I., Ultrasonics and its industrial applications, Concultants Bureau (1960).

[2] Banks, В., Oldfield, G. E. and Rawding, H., Ultrasonic flaw detection in metals, Illiffe, Prentice-Hall (1962). [3] Berger, H., Neutron radiography, Elsevier (1965).

[4] Betz, C. E., Principles of magnetic particle testing, Magnaflux Corp. (1967).

[5] Betz, C. E., Principles of penetrants, Magnaux Corp. (1963).

[6] Clauser, H. R., Practical radiography for industry, Reinhold (1952).

[7] Dunegan, H. and Harris, D., Acoustic emission, Ultrasonics, 7 (1969), pp. 160–166.

[8] Gerberich, W. W. Stress wave emission as a measure of crack growth, Int. J. Fract Mech., 3 (1967) pp. 185–192.

[9] Green, A. T. Detection of incipient failures in pressure vessels by stress-wave emission, Nuclear Safety, 10 (1969) pp. 1 – 15.

[10] Green, А. Т., Dunegan, H. L. and Tetelman, A. S., Non destructive inspection of aircraft structures via acoustic emission., Dunegan Res. Corp. Rept. TR-107 1970).

[11] Hinsley, J. F., Non-destrictive testing, McDonald and Evans (1959).

[12] Hogarth, C. A., and Blitz, J., Techniques of non-destructive testing, Butter-worths, (1960).

[13] Krautkramer, J., and Krautkramer, H., Werkstoffprufung mil Ultraschall, Springer (1961).

[14] Lamble, J. H., Principles and practice of non-destructive testing, Heywood (1962).

[15] McGonnagle, W. J., Non-destructive testing, Fracture III, pp. 371–430. Liebowitz, Ed., Academic Press (1969).

[16] McGonnagle, W. J., Non-destructive testing, McGraw-Hill (1961).

[17] Rockley, J. C., An introduction to industrial radiology, Butterworths (1964).

[18] Stanford, E. G. et al. Progress in non-destructive testing, Heywood (1960).

[19] Walter, E. V. and Parry, D. L., Field evaluation of heavy-walled pressure vessels using acoustic emission, Mat. Evaluation, 29 (1971) pp. 117–124.



К гл. XIII



[1] Cartwright, D. J., Methods of determining stress intensity factors, R. A. E.
TR 73031 (1973).

[2] Westergaard, H. M., Bearing pressures and cracks, J. Appl. Mech., 61 (1939) pp. A49–53.

[3] Muskhelishvili, N. I., Some basic problems of the mathematical theory of elasticity, (1938), English translation Noordhoff (1953).

[4] Sill, G. C. Application of Muskhelishvili's method to fracture mechanics, Trans. Chin. Ass. Adv. Studies, (1962).

[5] Erdogan, F., On the stress distribution in plates with collinear cuts under arbitrary loads, Proc. 4th U. S. Nat. Congress Appl. Mech., (1962).

[6] Bilby, B. A., Cottrell, A. H., Smith, E. and Swinden, K. H., Plastic yielding; from sharp notches, Proc. Roy. Soc. A 279, (1964) pp. 1–9.

[7] Bilby, B. A., and Eshelby, J. D., Dislocations and the theory of fracture,. Fracture I, pp. 99–182, Liebowitz, Ed., Academic Press (1969).

[8] Bowie, O. L., Analysis of an infinite plate containing radial cracks originating at the boundary of an internal circular hole, J. Math, and Phys., 25 (1956). pp. 60–71.

[9] Bowie, O. L. and Neal, D. M., Modified mapping-collocation technique for accurate calculation of stress intensity factors, Int. J. Fract. Mech., 6 (1970), pp. 199–206.

[10] Gross, Bl, Srawley, J. E. and Brown, W. F., Stress intensity factors for a single-edgenotch tension specimen by boundary collocation of a stress function, NASA TN D-2395 (1964).

[11] Srawley, J. E. and Gross, В., Stress intensity factors for crack-line loaded edge-
crac specimens, NASA TN D-3820 (1967).

[12] Isida, M., On the determination of stress intensity factors for some common structural problems, Eng. Fract. Mech., 2 (1970) pp. 61–79.

[13] Zienkiewicz, O. C., The finite element method in engineering science, McGraw-Hill (1971).

[14] Watwood Jr., V. В., The finite element method for prediction of crack behaviour, Nuclear Eng. and Design, 11 (1969) pp. 323–332.

[15] Chan, S. K., Tuba, I. S. and Wilson, W. K., On the finite element method in linear fracture mechanics, Eng. Fract. Mech. 2 (1970) pp. 1 –17.

[16] Buskov, E., The calculation of stress intensity factors using the'finite element method with cracked elements, Int. J. Fract. Mech., 6 (1970) pp. 159–167.

[17] Tracey, D. M., Finite elements for determination of crack tip elastic stress, intensity factors, Eng. Fract. Mech., 3 (1971) pp. 255–265.

[18] Walsh, P. F., The computation of stress intensity factors by a special finite element technique, Int. J. Solids and Struct., 7 (1971) pp. 1333–1342.

[19] Mowbray, D. F., A note on the finite element method in linear fracture mechanics, Eng. Fract. Mech., 2 (1970) pp. 173–176.

[20] Swanson, S. R., Finite element solutions for a cracked two-layered elastic cylinder, Eng. Fract. Mech., 3 (1971) pp. 283–289.

[21] Isida, M., On the tension of a strip with a central elliptical hole, Trans. Jap. Soc. Mech. Eng., 21 (1955).

[22] Ha-yes, D. J., Some applications of elastic-plastic analysis to fracture mechanics Ph. D. Thesis, Imperial College (1970).

[23] Marcal, P. V. and King, I. P., Elastic-plastic analysis of two-dimensional stress systems by the finite element method, Int. J. Mech. Sciences, 9 (1967) pp. 143–154.

[24] Levy. N., Marcal, P. V., Ostergren, W. J. and Rice, J. R., Small scale yielding near a crack in plane strain. A finite element analysis, Int. J. Fract. Mech. 1 (1971) pp. 143–156.

[25] De Koning, A. U., Results of calculations with TRIM 6 and TRIAX 6 elastic-plastic elements, Nat. Aerospace Inst. Amsterdam Rept. MP 73010 (1973).

[26] Smith, D. Q. and Smith, C. W., A photoelastic evaluation of the influence of closure and other effects upon the local stresses in cracked plates Int. J. Fract. Mech.; 6 (1970) pp. 305–318.

[27] Gerberich, W. W. Stress distribution around a slowly growing crack determined by photoelastic coating method, Proc. SESA, 19 (1962) pp. 395–365.

[28] Kobayashi, A. S., Photoelastic studies of fracture, Fracture III, pp. 311–369 Liebowitz, Ed., Academic Press, (1969).

[29] Dixon, J. R., Stress distribution around edge slits in tension, Nat. Eng. Lab. Glasgow, Rept 13 (1961).

[30] Smith, D. G. and Smith, C. W, Photoelastic determination of mixed mode stress intensity factors; Eng. Fract. Mech., 4 (1972) pp. 357–366.

[31] Monthulet, A., Bhandari, S. K. and Riviere, C., Methodes pratiques de determination du facteur d'intensite des contraintes pour la propagation des fissures, La Recherche Aerospatiale, (1971) pp. 297–303.

[32] Barrois, W., Manual on fatigue of structures, AGARD-Man-8-70 (1970).

[33] Bhandari, S. K., Etude experimental du facteur d'intensite des contraintes аи voisinage de la pointe d'une fissure de fatigue centrals dans une tole mince аи moyen des mesures extensometriques, These, Ecole Nat. Superieure de 1'Aeronau-tique, Paris (1969).

[34] Sommer, E., An optical method for determining the crack tip stress intensity factor, Eng. Fracture Mech., 1 (1970) pp. 705–718.

[35] Gallagher, J. P., Experimentally determined stress intensity factors for several contoured DCB specimens, Eng. Fracture Mech., 3 (1971) pp. 27–43.

[36] Schra, L., Boerema, P. J. and Van Leeuwen- H. P., Experimental determination of the dependence of compliance on crack tip configuration of a tapered DCB specimen, Nat. Aerospace Inst. Amsterdam Rept. TR 73025 (1973).

[37] Ottens, H. H. and Lof, C. J., Finite element calculations of the compliance of a tapered DCB specimen for different crack configurations, Nat. Aerospace Lab. Rept. TR 72083 (1972).

[38] James, L. A. and Anderson, W. E., A simple experimental procedure for stress intensity factor calibration, Eng. Fracture Mechanics, 1 (1969) pp. 565– 568.

[39] Broek, D., The effect of intermetallic particles on fatigue crack propagation in aluminium alloys, 'Fracture, 1969, pp. 754–764, Chapman and Hall (1969).



К гл. XIV



[1] Bowie, О. L., Analysis of an infinite plate containing radial cracks originating at the boundary of an internal circular hole, J. Math, and Phasic., 25 (1956) pp. 60–71.

[2] Paris, P. C. and Sin, G. C., Stress analysis of cracks, ASTM STP 381, (1965) pp. 30–83.

[3] Figge, I. E. and Newman, J. C., Fatigue crack propagation in structures with simulated rivet forces, ASTM STP 415 (1967) pp. 71–93.

[4] Broek, D., The propagation of fatigue cracks emanating from holes, Nat. Aerospace Inst. Amsterdam, Rept. TR 72134 (1972).

[5] Feddersen, С. Е., Finite width corrections, ASTM STP 410 (1967) pp. 77–79.

[6] Elber, W., The significance. of fatigue crack closure, ASTM STP 486, (1971) pp. 230-242.

[7] Broek, D., and Vlieger, H., Cracks emanating from holes in plane stress, Int. J. Fracture Mech., 8 (1972) pp. 353–356.

[8] Wanhill, R. J., H., Stress intensity factor solutions for a corner flaw at a hole and their application to design, Nat. Aerospace Inst. Amsterdam, Rep. Tr 73.016 (1973).

[9] Hall. L. R. and Finger, R. W., Fracture and fatigue growth of partially embedded flaws, Proc. Air Force Conf. (1969) AFFDL TR 70-144 (1970) pp. 235–262.

[10] Liu, A. F.. Stress intensity factor for a corner flaw, Eng. Fract. Mech., 4 (1972) pp. 175–180.

[11] Broek, D., et al., Applicability^ fracture toughness data to surface flaws and to corner cracks at holes, Nat. Aerospace Inst. Amsterdam, Rept. TR 71033 (1971).

[12] Kabayashi, A. S., Zii, M. and Hall, L. R., Approximate stress intensity factor for an embedded elliptical crack near to parallel free surfaces, Int. J. Fract. Mech., 1 (1965) pp. 81–95.

[13] Kobayashi, A. S. and Moss, W. L., Stress intensity magnification factors for surfaceflawed tension plate and toched round tension bars, Fracture 1969, pp. 31–45, Chapman and Hall (1970).

[14] Irwin, G. R., The crack extension force for a part-through crack in a plate, J. Appl. Mech., (1963) pp. 651–654.

[15] Isida, M., On the determination of stress intensity factors for some common structural problems, Eng. Fract. Mech., 2 (1970) pp. 61–79.

[16] Van Oosten Slingeland, G. L. and Broek, D., Fatigue cracks approaching circylar holes (In Dutch), Delft University rept. (1973).

[17] De Rijk, P., Empirical investigation on some methods for stopping the growth of fatigue cracks, Nat. Aerospace Inst. Amsterdam, Rept. TR 70021 (1970).

[18] Van Leeuwen, H. P. et al., The repair of fatigue cracks in low-alloy steel sheet Nat. Aerospace Inst. Amsterdam, Rept. TR 70029 (1970).

[19] Eggwitz, S., Review of some Swedish investigations on fatigue during the period 1967–1969, Swedish Aerospace Inst. FFA Rept. TN-HE-1270 (1969).

[20] Erdogan, F. and Sih, G. C., On the crack extension in plates under plane loading and transverse shear, J. Basic Eng., 85 (1963) pp. 519–527.

[21] Wilson, W. K., Clark, W. G. and Wessel, E. Т., Fracture mechanics for combined loading and low to intermediate strength levels, Westinghouse Res. Rept. No. 10276 (1968).

[22] Pook, L. P., The effect of crack angle on fracture toughness, Nat. Eng. Lab., East Kilbride, Rept. NEL 449 (1970).

[23] Hoskin, B. C., Graff, D. G. and Foden, P. J., Fracture of tension panels with oblique cracks, Aer. Res. Lab., Melbourne, Rept. SM 305 (1965).

[24] Tuba, L. S. and Wilson, W. K., Safety factors for mixed mode linear fracture mechanics, Int. J. Fract. Mech., 6 (1970) pp. 101–103.

[25] lida, S. and Kobayashi, A. S., Crack propagation rate in 7075-T6 plates under cyclic tensile and transverse shear loading, J. Basic Eng., (1969) pp. 764– 769.

[26] Munse, W. H., Brittle fracture in weldments, Fracture IV, pp. 371–438, Liebowitz, Ed., Academic Press (1969).

[27] Wells, A. A. Effects of residual stress on brittle fracture, Fracture IV, pp. 337–370, Liebowitz, Ed., Academic Press (1969).

[28] Kies, J. A., Smith, H L., Romine, H. E. and Bernstein, H., Fracture testing of weldments, ASTM STP 381, (1965) pp. 328–353.

[29] Schijve, J., The analysis of random-load-times histories with relation to fatigue tests and life calculations, Fatigue of Aircraft Structures, p. 115, Pergamon (1963).

[30] Schijve, J., The accumulation of fatigue damage in aircraft materials and structures, AGARDograph No. 157 (1972).

[31] De Jonge, J. В., The monitoring of fatigue loads, ICAS Congress Rome (1970), paper 70–31.

[32] Van Dijk, G. M., Statistical load data processing ICAF Symp. Miami (1971).

[33] Buxbaum, D., Statische Zahlverfahren als Bindeglied zwischen Beanspruchungsmessungen und Betriebstigkeitsyersuch, Lab. fur Betriebsfestigkeit TR-TB-64, Darmstadt (1966).

[34] Palmgren, A., Die Lebensdauer von Kugellagern, Zeitschrift fur Deutsche Ingenieure, 68 (1924) pp. 339–341.

[35] Miner, M. A., Cumulative damage in fatigue, J. Applied Mech., 12 (1945) pp. A159–164.

[36] Von Euw, E. F. J., Effect of overload cycles on subsequent fatigue crack propagation in 2024-T3, Lenigh University, Ph. D. Thesis (1971).

[37] Smith, C. R., Fatigue-service life prediction based on tests at constant stress levels, Proc. SESA 16 (1958) p. 9.

[38] Crews, J. H., Elastic-plastic stress-strain-behaviour at notch roots in sheet specimens under constant amplitude loading, NASA TN D–5253 (1969).

[39] Impellizzerri, L. F., Cumbulative damage analysis in structural fatigue ASTM STP 462, (1970) pp. 40-68.

[40] Habibie, В. J., Eine Berechnungsmethode гит Voraussagen des Fortschritts von Rissen unter beliebigen Belastungen, Messerschmitt-Bolkow-Blohm report UH-03-71. Hamburg (1971).

[41] Wheeler, О. Е., Spectrum loading and crack growth, ASME publ. (1971).

[42] Willenborg, J., Engle, R. H. and Wood, H. A., A crack growth retardation model based on effective stress concepts, AFFDL-TM-71-1 FBR (1971).

[43] Schijve, J. and Jacobs, F. A., Fatigue crack propagation in unnotchrd mid notched aluminium alloy specimens, Nat. Aerospace Inst. Amsterdam, Kipl. TR-M-2128 (1964).

[44] Schijve, J. and Broek, D., Crack-propagation tests based on a gust spectrum with variable amplitude loading, Aircraft Engineering, 34 (1972) pp. 314–316.

[45] Wood, H. A., Analysis of crack propagation under aircraft spectrum loading, Lecture presented to ASTM-E-24 Comrnitte (1973).

[46] Hardrath, H. F., A review of cumulative damage, Paper presented to AGARI) (1965).

[47] Williams, J. G. and Ewing, P. D., Fracture under complex stress – The angled crack problem. Int. J. Fracture Mech., 8 (1972) pp. 441–446.



К гл. XV



[1] Nichols, R. W., Some applications of fracture mechanics in power engineering, 3rd ICF Conference I (1973) VIII-412.

[2] Dunegan, H. L., Harris, D. O. and Tatro, C. A., Fracture analysis by use of acoustic emission, Eng. Fracture Mech., 1 (1968) pp. 105–122.

[3] Pellini, W. S., et al. Review of concepts and status of procedures for fracture safe design of complex welded structures involving metals of low to ultra-high strength levels, Naval Res. Lab., Washington, Rept. 6300 (1965).

[4] Van Elst, H. C., The intermittant propagation of brittle fracture in steel, AIME Trans. 230, (1964) pp. 460–469.

[5] Pellini, W. S and Lo'ss, F. J., Integration of metallurgical anavjj pture mechanics concepts of transition temperature factors relating to fracture-safe design for structural steels, Naval, Res. Lab., Washington, Rept. 6900 (1969).

[6] Boyd, G. M., Fracture design practice for ship structures, Fracture V, pp. 383– 470, Liebowitz, Ed., Academic Press (1969).

[7] Nichols, R; W. and Cowan, A., Selection of material and other aspects of design against brittle fracture and large steel structures, Fracture V, pp. 233– 284, Liebowitz, Ed., Academic Press (1969).

[8] Hall, W. J., Evaluation of fracture tests and specimen preparation, Fracture IV, pp. 2–44, Liebowitz, Ed., Academic Press (1969).

[9] Tetelman, A. S. and McEvily, A. J., Fracture of structural materials, Wiley (1967).

[10] Folias, E. S., A finite line crack in a pressured cylindrical sheel, Int. J. Fracture Mech., 1 (1965) pp. 104–113.

[11] Peters, R. W. and Kuhn, P., Bursting strength of unsiffenned pressure cylinder with slits, NACA TN 3393 (1957).

[12] Pierce, W. S., Flawed single- and multilayer AISI 301 pressure vessels at cryogenic temperatures, NASA TN D-2946 (1965).

[13] Kihara, H., Ikeda, K. and Iwanga, H., Brittle fracture initiation of line pipe, I. I. W. Doc X-371-66 (1966).

[14] Crichlow, W. J. and Wells, R. H., Crack propagation and residual static strength of fatigue cracked titanium and steel cylinders, ASTM STP, 415 (1967), p. 25.

[15] Maxey, W. A. Kiefner, J. F., and Duffy, A. R., Ductile fracture initiation, propagation and arrest in cylindrical vessels, A STM STP, 518 (1972) pp. 70– 81..

[16] Maxey, W. A. et al. Experimental investigation of ductile fractures in piping, Battelle Columbus rept., undated.

[17] Kiefner, J. F., etal. Recent research on flaw behaviour during hydrostatic testing, AQA Operating Sect. Transm. Conf., Houston (1971).

[18] Eiber, R. J. et al. Further work on flaw dehaviour in pressure vessels, Cpnf. On practical applications of fracture mechanics to pressure vessel technology (1971).

[19] Kiefner, J. F. et al. The failurestress levelsof flaws in pressurized cylinders, ASTM 6th Nat. Symp. fracture mechanics (1972).

[20] Duffy, A. R. et al., Fracture design practices for pressure piping, Fracture V, pp. 159–232, Liebowitz, Ed., Academic Press (1969).

[21] Dugdale, D. S., Yielding of steel plates containing slits, J. Mech. Phys. Solids, 8 (1960) pp. 100 – 108.

[22] Harm, G. Т., Sarrate, M. and Rosenfield, A. R., Criteria for crack extension in cylindrical pressure vessels, Int. J. Fract. Mech., 5 (1969) pp. 187–210.

[23] Anderson, R. B. and Sullivan, T. L., Fracture mechanics of through-cracked cylindrical pressure vessels, NASA TN D-3252 (1966).

[24] Getz, D. L., Pierce, W. S. and Calvert, H., Correlation of uniaxial notch tensile data with pressure vessel fracture charactemto, ASME paper 63 WA-187 (1963).

[25] Rudinger, G., Wave diagrams for nonsteady flow in ducts, Van Nostrand (1955).

[26] ASTM committee, The slow growth and rapid propagation of cracks, Materials Res. and Standards, 1 (1961) pp. 389–394.

[27] Irwin G. R., Fracture of pressure vessels, Materials for missiles and spececraft, pp. 204–229, McGraw-Hill (1963).

[28] Irwin, G. R. and Srawley, J. E., Progress in the development of crack toughness fracture tests, Materialprufung, 4 (1962) pp. 1 –11.

[29] Kobayashi, A. S., Zii, M. and Hall, L. R., Approximate stress intensity factor for an embedded elliptical crack near two parallel free sulfaces, Int. J. Fract. Mech., 1 (1965) pp. 81–95.

[30] Hardrath, H. F. A., A unified technology plant for fatigue and fracture design, NASA paper presented to ICAF (1973).

[31] Schra et al., Private communication.



Дополнительная

[32] Adams, N. J. I., The influence of curvature on К of a circumferential crack in a cylindrical shell, to be published.

[33] Bluhm, J. I. and Marderosam, M. M., Fracture arrest capabilities of annularly reinforced cylindrical pressure vessels, Exp. Mechanics, 3 (1963) pp. 57–66.

[34] Edmondson, В., Formby, C. L., Juverics R. and Stagg M. S. Aspects of failures of large steel pressure vessels, Fracture, 1969, pp. 192–204, Chapman and Hall (1969).

[35] Folias, E. S., A finite line crack in a pressurized spherical shell, Iht. J. Fracture Mech., 1 (1965) pp. 20–46.

[36] Follias, E. S., On the theory of fracture of curved sheets, Eng. Fracture Mech., 2 (1970) pp. 151 – 164.

[37] Garg, S. K. and Siekman, J., On the fracture of a thin spherical shell under blast loading, Exp. Mechanics, 6 (1966) pp. 39–44.

[38] Irwin, G. R., Fracture of pressure vessels, Materials for missiles and spacecraft, Parker, Ed., pp. 204–209, McGraw-Hill (1963).

[39] Mayer, T. R. and Yanichko, S. E., Use of fracture mechanics in reactor vessel surveillance, J. Basic Eng., (1971) pp. 259–264.

[40] Merkle, J. G., Fracture safety analysis concepts of nuclear pressure vessels considering the effects of irradiation, J. Basic Eng., (1971) pp. 265–273.

[41] Parry, G. W. and Lazzeri, L., Fracture mechanics and pressure vessels under yielding conditions, Eng. Fracture Mech., 1 (1969) pp. 519–537.

[42] Pierce, W. S., Effects of surface and through cracks on failure of pressurized thin-walled cylinders of 2014-T4 aluminium, NASA–TN D-6099 (1970).

[43] Singer, E., Fracture mechanics in design of pressure vessels, Eng. Fracture Mech., 1 (1969) pp. 507–517.

[44] Sowerley, R. and Johnson, W., Use of slip line field theory for the plastic design of pressure vessels, Exp. Stress Analysis and its Influence on Design, paper 9, Cambridge (1970).

[45] Swift, T. and Wang, D. Y., Analysis method and test verification of a cracked fuselage strukture., Douglas paper 5684 (1969).

[46] Tielsch, H., Defects and failures in pressure vessels and piping, Reinhold-Chapman and Hall (1965).

[47] Tiffany, C. F., On the prevention of dealyed time failures of aerospace pressure vessels, J. Franklin Inst., 290 (1970) pp. 567–582.

[48] Wessel, E. Т., Correlation of laboratory fracture toughness data with performance of large steel pressure vessels, Welding Journal, 43 (1964) pp. -415s-424s.

[49] Hahn, G. Т., Sarrate, M., Kanninen, M. F. and Rosenfield, A. R., A modelf for unstable shear crack propagation in pipes containing gas pressure, Int. J. of Fracture, 9 (1973) pp. 209–222.

[50] Ricardella, P. C. and Mager, T. R., Fatigue crack growth of pressurized water reactor pressure vessels, ASTM STP 513, (1972) pp. 260–279.

[51] Moore, R. L., Nordmark, G. E. and Kaufman, J. G., Fatigue and fracliin characteristics of aluminium alloy cylinders under internal pressure, Eng. Fracture, Mech., 4 (1972) pp. 51–63.

[52] Bartholome, G., Miksch, M., Neubrech, G. and Vasoukis, G., Fracture and safety analysis of nuclear pressure vessels, Eng. Fracture Mech., 5 (1973) pp. 431–446.

[53] Murthy, M. V. V., Rao, K. P. and Rao, A. K., Stresses around an axial crack in a pressurized cylindrical shell, Int. J. Fracture Mech., 8 (1972) pp. 287–297.



К гл. XVI



[1] Grief, R. and Sanders, J. L., The effect of a stringer on the stress in a cracked sheet, Harvard University TR 18 (1963).

[2] Vlieger, H. and Broek, D., Residual strength of cracked stiffened panels, limit up sheet structures, AGARD Fracture Mechanics Survey (1974).

[3] Vlieger, H., Residual strength of cracked stiffened panels, Eng. Fracture Mechanics, 5 (1973) pp. 447-478.

[4] Рое, С. С., Fatigue crack propagation in stiffened panels, ASTM STP, (1971) pp. 79–97.

[5] Рое, С. С. The effect of riveted and uniformly spaced stringers on the stress intensity factor of a cracked sheet. Air Force Conf. on Fracture and Fatigue (1969), AFFDL-TR-70-144 (1970) pp. 207–216.

[6] Swift, T. and Wang, D. Y., Damage tolerant design analysis methods and test verification of fuselage structure, Air Force Conf. on Fatigue and Fracture (1969), AFFDL-TR-70–144, (1970) pp. 653–683.

[7] Swift, Т., Development of the fail-safe design features of the DC-10, ASTM STP 486 (1971) pp.,164–214. [8] Greager, H. and Lui. A. F. The effect of reinforcements on the slow stable tear and catastrophic failure of thin metal sheet, AIAA Paper 71 – 113 (1971).

[9] Love, A. E. H., A treatise on the mathematical theory of elasticity, Cambridge Un. Press, 4th Ed., 1944.

[10] Romualdi, P., Frasier, J. T. and Irwin, G. R., Crack-extension-force near a riveted stringer, Naval Research Laboratory Memo no. 4956 (1957).

[11] Crichlow, W. J., The ultimate strength of damaged structure, Full-Scale Fatigue Testing of Aircraft Structures Plantema and Schijve, Eds., pp. 149–209. Pergamon (1961).

[12] Crichlow, W. J., Stable crack propagation fail-safe design criteria-analytical methods and test procedures, AIAA Paper 69–215 (1969).

[13] Troughton, A. J. and McStay, J., Theory and practice in fail-safe wing design. Current aeronautical fatigue problems, pp. 429–562. Schijve, Heath-Smith, Welbourne, Eds., Pargamon (1965).

[14] Liu, A. F. and Ekvall, J. C. Material toughness and residual strength of damage tolerant aircraft structures, ASTM STP 486, (1971) pp. 98–121.

[15] Hardrath, H. F. et al., Fatigue crack propagation in aluminium alloy box beams, NACA TN 3856 (1956).

[16] Hardrath, H. F. and Leybold, H. A., Further investigations of fatigue crack-propagation in aluminium alloy box beams, NACA TN 4246 (1958).

[17] Bartelds, G. and Van de Veer, I., Elastic energy release rates in cracked sandwich panels, Nat. Aerospace Inst. Amsterdam TR 72028 (1972).

[18] Smith, S. H., Porter, T. R. and Engstrom, W. L Fatigue crack propagation behavior and residual strength of bonded reinforced, lamellated and sandwich panels AFFDL TR. 70-144 (1970) pp. 611-634.



ЛИТЕРАТУРА СОВЕТСКИХ АВТОРОВ


К гл. I

Панасюк В. В. Предельное равновесие хрупких тел с трещинами. — Киев: Наукова думка, 1968.



К гл. II

Черепанов Г. П. Механика хрупкого разрушения. — М.: Наука, 1974.



К гл. III

Мусхелишнили Н. И. Некоторые основные математические задачи теории упругости 5-е изд. — М.: Наука, 1966.

Санин Г. П. Распределение напряжений около отверстии. — Киев: Наукова думка, 1968.



К гл. IV

Партон В. X. Морозов Е. М. Механика упруго-пластического разрушения. — М.: Наука, 1974.



К гл. VI

Финкель В. М. Физика разрушения. — М.: Металлургия, 1970.

Финкель В. М. Физические основы торможения разрушения. — М.: Металлургия, 1977.



К гл. X

Серенсен С. В. Сопротивление материалов хрупкому и циклическому разрушению. — М.: Атомиздат, 1975.

Школьник Л. М. Скорость роста трещин и живучесть металла. — М.: Металлургия, 1973.

Усталость и вязкость разрушения металлов/ Под ред. В. С. Ивановой, С. Е. Гуревича. — М.: Наука, 1974.



К гл. XI

Разрушение алюминиевых сплавов при растягивающих напряжениях/ Дриц М. Е., Корольков А. М., Гук Ю. П. и др.— М.: Наука, 1973.

Качанов Л. М. Основы механики разрушения. — М.: Наука, 1974. Черепанов Г. П., Ершов Л. В. Механика разрушения. — М.: Машиностроение, 1974.



К гл. XIV

Копельман Л. А. Сопротивляемость сварных узлов хрупкому разрушению. — Л.: Машиностроение, 1978.



К гл. XV

Махутов Н. А. Сопротивление элементов конструкций хрупкому разрушению. — М.: Машиностроение, 1973.



К гл. XVI

Повреждение судовых конструкций/ Барабанов Н. В., Иванов Н. А., Новиков В. В. и др. — Л.: Судостроение, 1977.

Папаеюк В. В., Саврук М. П., Дацышин А. П. Распределение напряжений около трещин в пластинах и оболочках. — Киев: Наукова думка, 1976.



 Предыдущая  Литература
 
FEA.RU - Расчеты прочности, CAD/FEA/CFD/CAE Технологии, КЭ механика
Яндекс цитирования