Жан Лерон Д'Аламбер

Д'Аламбер (D'Alembert) Жан Лерон (16.11.1717, Париж, — 29.10.1783, там же), французский математик и философ, член Парижской АН (1754), Петербургской АН (1764) и др. академий. С 1751 Д'Аламбер работал вместе с Д. Дидро над созданием «Энциклопедии наук, искусств и ремёсел». В «Энциклопедии» Д'Аламбер вёл отделы математики и физики. В 1757, не выдержав преследований реакции, которым подвергалась его деятельность в «Энциклопедии», он отошёл от её издания и целиком посвятил себя научной работе. В «Трактате о динамике» (1743) впервые сформулировал общие правила составления дифференциальных уравнений движения любых материальных систем, сведя задачи динамики к статике (см. Д'Аламбера принцип). Этот принцип был применен им в трактате «Рассуждения об общей причине ветров» (1774) для обоснования гидродинамики (доказал существование наряду с океанскими также воздушных приливов). В астрономии Д'Аламбер обосновал теорию возмущения планет и первым строго объяснил теорию предварения равноденствий и нутации. Основные математические исследования Д'Аламбера относятся к теории дифференциальных уравнений, где он дал метод решения дифференциального уравнения 2-го порядка с частными производными, выражающего поперечные колебания струны (волнового уравнения), в виде суммы двух произвольных функций и по т. н. граничным условиям сумел выразить одну из них через другую. Эти работы Д'Аламбера, а также последующие работы Л. Эйлера и Д. Бернулли составили основу математической физики. При решении одного дифференциального уравнения с частными производными эллиптического типа, встретившегося в гидродинамике, Д'Аламбер впервые применил функции комплексного переменного. У Д'Аламбера (а вместе с тем и у Л. Эйлера) встречаются те уравнения, связывающие действительную и мнимую части аналитической функции, которые впоследствии получили название Коши — Римана уравнений. Д'Аламберу принадлежат также важные результаты в теории обыкновенных дифференциальных уравнений с постоянными коэффициентами и систем таких уравнений 1-го и 2-го порядков. Исчисление бесконечно малых Д'Аламбер стремился обосновать с помощью теории пределов, в теории рядов его имя носит широко употребительный достаточный признак сходимости. В алгебре Д'Аламбер дал первое (не вполне строгое) доказательство основной теоремы о существовании корня у алгебраического уравнения. В первых томах «Энциклопедии» Д'Аламбер поместил важные статьи: «Дифференциалы», «Уравнения», «Динамика», «Геометрия».

Жан Лерон Д'Аламбер

Жан Лерон Д'Аламбер

Из философских работ наиболее важное значение имеют вступительная статья к «Энциклопедии» «Очерк происхождения и развития наук» (1751, рус. пер. в книге «Родоначальники позитивизма», 1910), в которой дана классификация наук, и «Элементы философии» (1759). В теории познания вслед за Дж. Локком Д'Аламбер придерживался сенсуализма. В решении основных философских вопросов Д'Аламбер склонялся к скептицизму, считая невозможным что-либо достоверно утверждать о боге, взаимодействии его с материей, вечности или сотворённости материи и т. п. Сомневаясь в существовании бога и выступая с антиклерикальной критикой, Д'Аламбер, однако, не встал на позиции атеизма. В отличие от французских материалистов, Д'Аламбер считал, что существуют неизменные, не зависящие от общественной среды нравственные принципы. Взгляды Д'Аламбера по вопросам теории познания и религии были подвергнуты критике со стороны Дидро в произведении: «Сон Д'Аламбера» (1769, «Разговор Д'Аламбера и Дидро» (1769) и др. Д'Аламбер принадлежат также работы по вопросам музыкальной теории и музыкальной эстетики: трактат «О свободе музыки», в котором подведены итоги т. н. войны буффонов — борьбы вокруг вопросов оперного искусства, и др.

Опираясь на систему Ф. Бэкона, классифицировал науки, положив начало современному понятию "гуманитарные науки". В середине 1760-х гг. Даламбер был приглашён российской императрицей Екатериной II в качестве воспитателя наследника престола, но отказался принять приглашение.



 Предыдущая  Даламбер Жан Лерон  Следующая 
 
MYsopromat.ru - сопромат в режиме on-line
Яндекс цитирования